Over-relaxation methods and coupled Markov chains for Monte Carlo simulation

被引:0
|
作者
Piero Barone
Giovanni Sebastiani
Julian Stander
机构
来源
Statistics and Computing | 2002年 / 12卷
关键词
coupled algorithms; Gibbs sampler; spectral radius;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with improving the performance of certain Markov chain algorithms for Monte Carlo simulation. We propose a new algorithm for simulating from multivariate Gaussian densities. This algorithm combines ideas from coupled Markov chain methods and from an existing algorithm based only on over-relaxation. The rate of convergence of the proposed and existing algorithms can be measured in terms of the square of the spectral radius of certain matrices. We present examples in which the proposed algorithm converges faster than the existing algorithm and the Gibbs sampler. We also derive an expression for the asymptotic variance of any linear combination of the variables simulated by the proposed algorithm. We outline how the proposed algorithm can be extended to non-Gaussian densities.
引用
收藏
页码:17 / 26
页数:9
相关论文
共 50 条
  • [31] Markov chain Monte Carlo test of toric homogeneous Markov chains
    Takemura, Akimichi
    Hara, Hisayuki
    STATISTICAL METHODOLOGY, 2012, 9 (03) : 392 - 406
  • [32] Information gains from Monte Carlo Markov Chains
    Ahmad Mehrabi
    A. Ahmadi
    The European Physical Journal Plus, 135
  • [33] Ordering and improving the performance of Monte Carlo Markov chains
    Mira, A
    STATISTICAL SCIENCE, 2001, 16 (04) : 340 - 350
  • [34] Information gains from Monte Carlo Markov Chains
    Mehrabi, Ahmad
    Ahmadi, A.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (05):
  • [35] SIMULATION OF RELAXATION PROCESSES BY MONTE CARLO
    BIRD, GA
    JOURNAL OF COMPUTATIONAL PHYSICS, 1971, 8 (02) : 309 - &
  • [36] Markov Chain Monte Carlo methods1. Simple Monte Carlo
    K B Athreya
    Mohan Delampady
    T Krishnan
    Resonance, 2003, 8 (4) : 17 - 26
  • [37] MARKOV CHAIN SIMULATION FOR MULTILEVEL MONTE CARLO
    Jasra, Ajay
    Law, Kody J. H.
    Xu, Yaxian
    FOUNDATIONS OF DATA SCIENCE, 2021, 3 (01): : 27 - 47
  • [38] An introduction to Markov chain Monte Carlo methods
    Besag, J
    MATHEMATICAL FOUNDATIONS OF SPEECH AND LANGUAGE PROCESSING, 2004, 138 : 247 - 270
  • [39] MARGINAL MARKOV CHAIN MONTE CARLO METHODS
    van Dyk, David A.
    STATISTICA SINICA, 2010, 20 (04) : 1423 - 1454
  • [40] Particle Markov chain Monte Carlo methods
    Andrieu, Christophe
    Doucet, Arnaud
    Holenstein, Roman
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 269 - 342