Giant magnetic response of a two-dimensional antiferromagnet

被引:0
|
作者
Lin Hao
D. Meyers
Hidemaro Suwa
Junyi Yang
Clayton Frederick
Tamene R. Dasa
Gilberto Fabbris
Lukas Horak
Dominik Kriegner
Yongseong Choi
Jong-Woo Kim
Daniel Haskel
Philip J. Ryan
Haixuan Xu
Cristian D. Batista
M. P. M. Dean
Jian Liu
机构
[1] University of Tennessee,Department of Physics and Astronomy
[2] Brookhaven National Laboratory,Department of Condensed Matter Physics and Materials Science
[3] University of Tokyo,Department of Physics
[4] University of Tennessee,Department of Materials Science and Engineering
[5] Charles University,Department of Condensed Matter Physics
[6] Academy of Sciences of the Czech Republic,Institute of Physics
[7] Advanced Photon Source,School of Physical Sciences
[8] Argonne National Laboratory,Quantum Condensed Matter Division and Shull
[9] Dublin City University,Wollan Center
[10] Oak Ridge National Laboratory,undefined
来源
Nature Physics | 2018年 / 14卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A fundamental difference between antiferromagnets and ferromagnets is the lack of linear coupling to a uniform magnetic field due to the staggered order parameter1. Such coupling is possible via the Dzyaloshinskii–Moriya (DM) interaction2,3, but at the expense of reduced antiferromagnetic (AFM) susceptibility due to the canting-induced spin anisotropy4. We solve this long-standing problem with a top-down approach that utilizes spin–orbit coupling in the presence of a hidden SU(2) symmetry. We demonstrate giant AFM responses to sub-tesla external fields by exploiting the extremely strong two-dimensional critical fluctuations preserved under a symmetry-invariant exchange anisotropy, which is built into a square lattice artificially synthesized as a superlattice of SrIrO3 and SrTiO3. The observed field-induced logarithmic increase of the ordering temperature enables highly efficient control of the AFM order. Our results demonstrate that symmetry can be exploited in spin–orbit-coupled magnets to develop functional AFM materials for fast and secured spintronic devices5–9.
引用
收藏
页码:806 / 810
页数:4
相关论文
共 50 条
  • [11] Dynamical formation of a magnetic polaron in a two-dimensional quantum antiferromagnet
    Bohrdt, A.
    Grusdt, F.
    Knap, M.
    NEW JOURNAL OF PHYSICS, 2020, 22 (12):
  • [12] Collective excitations in a two-dimensional antiferromagnet in a strong magnetic field
    Syromyatnikov, A. V.
    PHYSICAL REVIEW B, 2009, 79 (05):
  • [13] Dynamics of the two-dimensional Heisenberg antiferromagnet in an external magnetic field
    L. S. Lima
    A. S. T. Pires
    The European Physical Journal B, 2011, 83
  • [14] Critical curve of two-dimensional Ising antiferromagnet in a magnetic field
    Akutsu, Noriko
    Akutsu, Yasuhiro
    Journal of Magnetism and Magnetic Materials, 1990, 90 pt 91 : 296 - 298
  • [15] Phase diagram of the two-dimensional quantum antiferromagnet in a magnetic field
    Cuccoli, Alessandro
    Gori, Giacomo
    Vaia, Ruggero
    Verrucchi, Paola
    Journal of Applied Physics, 2006, 99 (08):
  • [16] Dynamics of the two-dimensional Heisenberg antiferromagnet in an external magnetic field
    Lima, L. S.
    Pires, A. S. T.
    EUROPEAN PHYSICAL JOURNAL B, 2011, 83 (02): : 191 - 195
  • [17] Nuclear and magnetic structures of the two-dimensional antiferromagnet KFeF4
    Desert, A
    Bulou, A
    Leblanc, M
    Nouet, J
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1998, 10 (40) : 9067 - 9079
  • [18] Magnetic Phase Transitions and Magnetoelastic Coupling in a Two-Dimensional Stripy Antiferromagnet
    Gu, Pingfan
    Sun, Yujia
    Wang, Cong
    Peng, Yuxuan
    Zhu, Yaozheng
    Cheng, Xing
    Yuan, Kai
    Lyu, Chao
    Liu, Xuelu
    Tan, Qinghai
    Zhang, Qinghua
    Gu, Lin
    Wang, Zhi
    Wang, Hanwen
    Han, Zheng
    Watanabe, Kenji
    Taniguchi, Takashi
    Yang, Jinbo
    Zhang, Jun
    Ji, Wei
    Tan, Ping-Heng
    Ye, Yu
    NANO LETTERS, 2022, 22 (03) : 1233 - 1241
  • [19] Resistivity in two-dimensional doped antiferromagnet
    Belemuk, AM
    Barabanov, AF
    PHYSICS LETTERS A, 2004, 323 (1-2) : 138 - 147
  • [20] Frustrated vortex in a two-dimensional antiferromagnet
    Bogdan, MM
    LOW TEMPERATURE PHYSICS, 2005, 31 (8-9) : 735 - 739