Selected results and open problems on Hardy–Rellich and Poincaré–Friedrichs inequalities

被引:0
|
作者
Farit Avkhadiev
机构
[1] Kazan Federal University,Lobachevskii Institute of Mathematics and Mechanics
来源
Analysis and Mathematical Physics | 2021年 / 11卷
关键词
Hardy–Rellich and Poincaré–Friedrichs inequality; Euclidean maximum modulus; Uniformly perfect set; Exterior sphere condition; 26D10; 33C20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we give a survey of selected results and open problems on integral inequalities of Mathematical Physics connected with the papers of V. Maz’ya, S. Fillippas, A. Tertikas, R. Osserman, A. Ancona, H. Brezis, M. Marcus, Y. Pinchover, E. B. Davies, A. Laptev, J. L. Fernández, J. M. Rodríguez, P. Caldiroli, R. Musina, A. A. Balinsky, W. D. Evans, R. T.  Lewis, R. G. Nasibullin, I. K. Shafigullin, the author and other mathematicians. In addition, we give some new examples and present non-linear relationships between global numerical characteristics of domains in the Euclidean space of dimension n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}.
引用
收藏
相关论文
共 50 条