Clifford Algebra-Valued Segal–Bargmann Transform and Taylor Isomorphism

被引:0
|
作者
Sorawit Eaknipitsari
Wicharn Lewkeeratiyutkul
机构
[1] Chulalongkorn University,Department of Mathematics and Computer Science, Faculty of Science
来源
关键词
Segal–Bargmann transform; Clifford analysis; Monogenic function; Fock space; Primary 15A66; Secondary 32A36;
D O I
暂无
中图分类号
学科分类号
摘要
Classical Segal–Bargmann theory studies three Hilbert space unitary isomorphisms that describe the wave-particle duality and the configuration space-phase space. In this work, we generalized these concepts to Clifford algebra-valued functions. We establish the unitary isomorphisms among the space of Clifford algebra-valued square-integrable functions on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^n$$\end{document} with respect to a Gaussian measure, the space of monogenic square-integrable functions on Rn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{n+1}$$\end{document} with respect to another Gaussian measure and the space of Clifford algebra-valued linear functionals on symmetric tensor elements of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^n$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Lie Algebra-Valued Neural Networks
    Popa, Calin-Adrian
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [42] Perelomov problem and inversion of the Segal-Bargmann transform
    Yu. A. Neretin
    Functional Analysis and Its Applications, 2006, 40 : 330 - 333
  • [43] The Segal-Bargmann transform for path-groups
    Hall, BC
    Sengupta, AN
    JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 152 (01) : 220 - 254
  • [44] Segal-Bargmann-Hall Transform and Geometric Quantization
    刘卫平
    王正栋
    胡大鹏
    数学进展, 2003, (04) : 509 - 511
  • [45] Bounds on the Segal-Bargmann transform of Lp functions
    Hall, BC
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2001, 7 (06) : 553 - 569
  • [46] Bounds on the Segal-Bargmann transform ofLp functions
    Brian C. Hall
    Journal of Fourier Analysis and Applications, 2001, 7 : 553 - 569
  • [47] Lie Algebra-Valued Hopfield Neural Networks
    Popa, Calin-Adrian
    2015 17TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC), 2016, : 212 - 215
  • [48] The generalized Segal-Bargmann transform and special functions
    Davidson, M
    Olafsson, G
    ACTA APPLICANDAE MATHEMATICAE, 2004, 81 (1-3) : 29 - 50
  • [49] Segal-Bargmann transform: the q-deformation
    Cebron, Guillaume
    Ho, Ching-Wei
    LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (07) : 1677 - 1715
  • [50] Gutzmer's Formula and the Segal-Bargmann Transform
    Thangavelu, S.
    PERSPECTIVES IN MATHEMATICAL SCIENCES II: PURE MATHEMATICS, 2009, 8 : 209 - 221