Lyapunov Exponents for Random Perturbations of Coupled Standard Maps

被引:0
|
作者
Alex Blumenthal
Jinxin Xue
Yun Yang
机构
[1] Georgia Institute of Technology,School of Mathematics
[2] Tsinghua University,Department of Mathematics, Yau Mathematical Sciences Center
[3] Virginia Polytechnic Institute and State University,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give a quantitative estimate for the first N Lyapunov exponents for random perturbations of a natural class of 2N-dimensional volume-preserving systems exhibiting strong hyperbolicity on a large but noninvariant subset of the phase space. Concrete models covered by our setting include systems of coupled standard maps, in both ‘weak’ and ‘strong’ coupling regimes.
引用
收藏
页码:121 / 151
页数:30
相关论文
共 50 条
  • [31] Lyapunov Exponents for the Random Product of Two Shears
    Sturman, Rob
    Thiffeault, Jean-Luc
    JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (02) : 593 - 620
  • [32] Invariant functions for the Lyapunov exponents of random matrices
    Protasov, V. Yu
    SBORNIK MATHEMATICS, 2011, 202 (01) : 101 - 126
  • [33] Random and mean Lyapunov exponents for GLn(R)
    Armentano, Diego
    Chinta, Gautam
    Sahi, Siddhartha
    Shub, Michael
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024, 44 (08) : 2063 - 2079
  • [34] Maximal Lyapunov exponents for random matrix products
    Mark Pollicott
    Inventiones mathematicae, 2010, 181 : 209 - 226
  • [35] Lyapunov Exponents for the Random Product of Two Shears
    Rob Sturman
    Jean-Luc Thiffeault
    Journal of Nonlinear Science, 2019, 29 : 593 - 620
  • [36] ON LYAPUNOV EXPONENTS OF DIFFERENCE EQUATIONS WITH RANDOM DELAY
    Nguyen Dinh Cong
    Thai Son Doan
    Siegmund, Stefan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (03): : 861 - 874
  • [37] Scaling of Lyapunov exponents of coupled chaotic systems
    Zillmer, R
    Ahlers, V
    Pikovsky, A
    PHYSICAL REVIEW E, 2000, 61 (01): : 332 - 341
  • [38] Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity
    DeMarco, L
    MATHEMATISCHE ANNALEN, 2003, 326 (01) : 43 - 73
  • [39] Lyapunov exponents maps and dynamics of nonlinear optical systems
    Grygiel, K
    Szlachetka, P
    13TH POLISH-CZECH-SLOVAK CONFERENCE ON WAVE AND QUANTUM ASPECTS OF CONTEMPORARY OPTICS, 2003, 5259 : 386 - 394
  • [40] Coincidence of Lyapunov exponents for random walks in weak random potentials
    Flury, Markus
    ANNALS OF PROBABILITY, 2008, 36 (04): : 1528 - 1583