Two thought experiments are analyzed, revealing that the quantum state of the universe does not contain definitive evidence of the wavefunction collapse. The first thought experiment shows that unitary quantum evolution alone can account for the outcomes of any combination of quantum experiments. This is in contradiction with the standard view on quantum measurement, which appeals to the wavefunction collapse, but it is in full agreement with the special state proposal (Schulman in Phys Lett A 102(9):396–400, 1984; J Stat Phys 42(3):689–719 1986; Time’s arrows and quantum measurement, Cambridge University Press, Cambridge 1997) that there are some rare states that account for quantum experiments by unitary evolution alone. The second thought experiment consists in successive measurements, and reveals that the standard quantum measurement scheme predicts violations of the conservation laws. It is shown that the standard view on quantum measurements makes some unnecessary assumptions which lead to the apparent necessity to invoke wavefunction collapse. Once these assumptions are removed, a new hope of a measurement scheme emerges, which, while still having open problems, is compatible with both the unitary evolution and the conservation laws, and suggests means to experimentally distinguish between full unitarity and discontinuous collapse. © 2017, Chapman University.