Bounds for zeros of a polynomial using numerical radius of Hilbert space operators

被引:0
|
作者
Pintu Bhunia
Santanu Bag
Kallol Paul
机构
[1] Jadavpur University,Department of Mathematics
[2] Vivekananda College For Women,Department of Mathematics
来源
关键词
Numerical radius; Operator matrix; Zeros of polynomial; 47A12; 15A60; 26C10;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain bounds for the numerical radius of 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \times 2$$\end{document} operator matrices which improve on the existing bounds. We also show that the inequalities obtained here generalize the existing ones. As an application of the results obtained here, we estimate the bounds for the zeros of a monic polynomial and illustrate with numerical examples that the bounds are better than the existing ones.
引用
收藏
相关论文
共 50 条
  • [31] ON THE ESTIMATION OF q -NUMERICAL RADIUS OF HILBERT SPACE OPERATORS
    Atra, Arnab
    Roy, Alguni
    OPERATORS AND MATRICES, 2024, 18 (02): : 343 - 359
  • [32] Furtherance of numerical radius inequalities of Hilbert space operators
    Pintu Bhunia
    Kallol Paul
    Archiv der Mathematik, 2021, 117 : 537 - 546
  • [33] SOME INEQUALITIES FOR THE NUMERICAL RADIUS FOR HILBERT SPACE OPERATORS
    Hosseini, Mohsen Shah
    Omidvar, Mohsen Erfanian
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 94 (03) : 489 - 496
  • [34] Norm and numerical radius inequalities for Hilbert space operators
    Bani-Domi, Watheq
    Kittaneh, Fuad
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (05): : 934 - 945
  • [35] Some Inequalities for the Numerical Radius of Hilbert Space Operators
    Gao, Fugen
    Hu, Yijuan
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (07)
  • [36] Furtherance of numerical radius inequalities of Hilbert space operators
    Bhunia, Pintu
    Paul, Kallol
    ARCHIV DER MATHEMATIK, 2021, 117 (05) : 537 - 546
  • [37] SOME NEW NUMERICAL RADIUS AND HILBERT-SCHMIDT NUMERICAL RADIUS INEQUALITIES FOR HILBERT SPACE OPERATORS
    Yang, Chaojun
    Xu, Minghua
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2023, 17 (01): : 269 - 282
  • [38] Estimations of Zeros of a Polynomial Using Numerical Radius Inequalities
    Bhunia, Pintu
    Bag, Santanu
    Nayak, Raj Kumar
    Paul, Kallol
    KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (04): : 845 - 858
  • [39] Better bounds on the numerical radii of Hilbert space operators
    Omidvar, Mohsen Erfanian
    Moradi, Hamid Reza
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 604 : 265 - 277
  • [40] Some sharp bounds for the Hilbert-Schmidt numerical radius of operators
    Soumia, Aici
    Abdelkader, Frakis
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2024, 27 (07) : 1481 - 1489