Modelling soil compaction of agricultural soils using fuzzy logic approach and adaptive neuro-fuzzy inference system (ANFIS) approaches

被引:0
|
作者
Mohammadreza Abbaspour-Gilandeh
Yousef Abbaspour-Gilandeh
机构
[1] University of Mohaghegh Ardabili,Department of Biosystems Engineering, College of Agriculture and Natural Resources
关键词
Soil mechanical resistance; Moisture content; Bulk density; Electrical conductivity; Membership function; Prediction model;
D O I
暂无
中图分类号
学科分类号
摘要
One of the most important physical properties of the soil is its mechanical strength. Increasing soil mechanical strength will lead to increments in the draft, fuel consumption, work duration and equipment wear, but will follow the reduction in the root growth. Awareness of the soil cone index (as a criterion of the arable soil compaction) in order to production management in connection with the soil physical properties have high importance, especially in precision farming. On the other hand, finding the methods and models that be able to create the best function or model to estimate the soil cone index at the least cost and use of available data are crucial for researchers. The aim of this study was predicting arable soils cone index values by effective parameters on the soil cone index, including bulk density, soil moisture content and soil electrical conductivity by using Fuzzy and neuro-fuzzy systems. In this study, for measurement and determination of the influencing factors on the soil cone index value, the experimental design was the factorial experiment based on a randomized complete block design with five replications. The experimental field had three types of loam, sandy loam and loamy sand soils. The modeling of soil cone index was performed by using effective parameters such as bulk density, moisture content and soil electrical conductivity in the fuzzy and adaptive neuro-fuzzy inference system (ANFIS) systems. For fuzzification of input and output parameters, the linguistic variables, including very low (VL), low (L), medium (M), high (H) and very high (VH) were used. Since determining the type and number of membership functions was conducted experimentally, the triangular membership function for both input and output variables was used due to the high accuracy and convenience in system design. In ANFIS model, 80% and 20% of total data were considered as training and test data, respectively. The numbers of membership functions were selected 5 for each input parameters. ANFIS training was done by the hybrid method. The average of coefficients of determination (R2) were obtained 80.1% and 97.9% for the fuzzy and ANFIS models, respectively. The obtained model through ANFIS presented the high accuracy of 2.54% rather than the fuzzy models with the accuracy of 9.68%. Also in comparison with regression models, ANFIS model has high accuracy and can be used to estimate the soil cone index in agricultural land.
引用
收藏
页码:13 / 20
页数:7
相关论文
共 50 条
  • [41] Modeling of dielectric behavior of polymers nanocomposites using adaptive neuro-fuzzy inference system (ANFIS)
    R. A. Mohamed
    The European Physical Journal Plus, 137
  • [42] PREDICTION OF BIOMASS PELLET DENSITY USING ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM(ANFIS) METHOD
    Liu, Juan
    Yan, Zhuoyu
    Xu, Mingze
    Liu, Yudi
    Bai, Xuewei
    Xiu, Yonghai
    Wei, Desheng
    INMATEH-AGRICULTURAL ENGINEERING, 2023, 70 (02): : 181 - 190
  • [43] Predicting bending rigidity of woven fabrics using adaptive neuro-fuzzy inference system (ANFIS)
    Behera, B. K.
    Guruprasad, R.
    JOURNAL OF THE TEXTILE INSTITUTE, 2012, 103 (11) : 1205 - 1212
  • [44] Optimation of AMC's Tensile Properties Using Adaptive Neuro-Fuzzy Inference System (ANFIS)
    Seputra, Yulius Eka Agung
    Soegijono, Bambang
    INTERNATIONAL CONFERENCE ON CONDENSED MATTERS AND ADVANCED MATERIALS (IC2MAM 2018), 2019, 515
  • [45] Online critical clearing time estimation using an adaptive neuro-fuzzy inference system (ANFIS)
    Phootrakornchai, Witsawa
    Jiriwibhakorn, Somchat
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2015, 73 : 170 - 181
  • [46] Optimal Attitude Control of a Quadrotor UAV Using Adaptive Neuro-Fuzzy Inference System (ANFIS)
    Rezazadeh, Sina
    Ardestani, Maike Alinaghizadeh
    Sadeghi, Parichehr Shahidi
    2013 3RD INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, AND AUTOMATION (ICCIA), 2013, : 219 - 223
  • [47] Analysis of the Performance of a Hybrid Thermal Power Plant Using Adaptive Neuro-Fuzzy Inference System (ANFIS)-Based Approaches
    Kabengele, Kantu T.
    Olayode, Isaac O.
    Tartibu, Lagouge K.
    APPLIED SCIENCES-BASEL, 2023, 13 (21):
  • [48] Unsaturated soils permeability estimation by adaptive neuro-fuzzy inference system
    Jokar, Mehdi Hashemi
    Khosravi, Abdolkarim
    Heidaripanah, Ali
    Soltani, Fazlollah
    SOFT COMPUTING, 2019, 23 (16) : 6871 - 6881
  • [49] Performance prediction of a hybrid microgeneration system using Adaptive Neuro-Fuzzy Inference System (ANFIS) technique
    Yang, L.
    Entchev, E.
    APPLIED ENERGY, 2014, 134 : 197 - 203
  • [50] Unsaturated soils permeability estimation by adaptive neuro-fuzzy inference system
    Mehdi Hashemi Jokar
    Abdolkarim Khosravi
    Ali Heidaripanah
    Fazlollah Soltani
    Soft Computing, 2019, 23 : 6871 - 6881