We prove that up to automorphisms of the target the affine line A1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{A}^1}$$\end{document} admits a unique embedding into the regular part of an affine simplicial toric variety of dimension at least 4 which is smooth in codimension 2. This is an analog of the well-known result on the existence of a linearization of any polynomial embedding A1↪An\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{A}^1}\hookrightarrow{\mathbb{A}^n}$$\end{document} for n ≥ 1.
机构:
Univ Rey Juan Carlos, Dept Matemat Aplicada, ESCET, Madrid 28933, SpainUniv Rey Juan Carlos, Dept Matemat Aplicada, ESCET, Madrid 28933, Spain
Munoz, Roberto
Nolla, Alvaro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Madrid, Dept Didact Especif, Fac Formac Profesorado & Educ, Madrid, SpainUniv Rey Juan Carlos, Dept Matemat Aplicada, ESCET, Madrid 28933, Spain
机构:
Rutgers State Univ, Dept Math, New Brunswick, NJ 08901 USA
Inst Adv Study, Olden Lane, Princeton, NJ 08540 USARutgers State Univ, Dept Math, New Brunswick, NJ 08901 USA
Kontorovich, Alex
Lagarias, Jeffrey
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Math, Ann Arbor, MI 48109 USARutgers State Univ, Dept Math, New Brunswick, NJ 08901 USA