Lines in affine toric varieties

被引:0
|
作者
Shulim Kaliman
机构
[1] University of Miami,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove that up to automorphisms of the target the affine line A1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{A}^1}$$\end{document} admits a unique embedding into the regular part of an affine simplicial toric variety of dimension at least 4 which is smooth in codimension 2. This is an analog of the well-known result on the existence of a linearization of any polynomial embedding A1↪An\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{A}^1}\hookrightarrow{\mathbb{A}^n}$$\end{document} for n ≥ 1.
引用
收藏
页码:85 / 113
页数:28
相关论文
共 50 条
  • [1] LINES IN AFFINE TORIC VARIETIES
    Kaliman, Shulim
    ISRAEL JOURNAL OF MATHEMATICS, 2022, 250 (01) : 85 - 113
  • [2] A note on affine toric varieties
    Reyes, E
    Villarreal, RH
    Zárate, L
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 318 (1-3) : 173 - 179
  • [3] Syzygies of affine toric varieties
    Campillo, A
    Gimenez, P
    JOURNAL OF ALGEBRA, 2000, 225 (01) : 142 - 161
  • [4] The Gerstenhaber productof affine toric varieties
    Filip, Matej
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (03) : 1146 - 1162
  • [5] The Chow cohomology of affine toric varieties
    Edidin, Dan
    Richey, Ryan
    MATHEMATICAL RESEARCH LETTERS, 2020, 27 (06) : 1645 - 1667
  • [6] The algebraic density property for affine toric varieties
    Kutzschebauch, Frank
    Leuenberger, Matthias
    Liendo, Alvaro
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (08) : 3685 - 3700
  • [7] On the Weights of Root Subgroups of Affine Toric Varieties
    van Santen, Immanuel
    TRANSFORMATION GROUPS, 2025,
  • [8] G0 of affine, simplicial toric varieties
    Shen, Zeyu
    COMMUNICATIONS IN ALGEBRA, 2025,
  • [9] Overweight deformations of affine toric varieties and local uniformization
    Teissier, Bernard
    VALUATION THEORY IN INTERACTION, 2014, : 474 - 565
  • [10] Hochschild cohomology and deformation quantization of affine toric varieties
    Filip, Matej
    JOURNAL OF ALGEBRA, 2018, 506 : 188 - 214