We prove that up to automorphisms of the target the affine line A1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{A}^1}$$\end{document} admits a unique embedding into the regular part of an affine simplicial toric variety of dimension at least 4 which is smooth in codimension 2. This is an analog of the well-known result on the existence of a linearization of any polynomial embedding A1↪An\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{A}^1}\hookrightarrow{\mathbb{A}^n}$$\end{document} for n ≥ 1.
机构:
CNRS, Inst Math Jussieu Paris Rive Gauche, UMR 7586, F-75205 Paris 13, FranceCNRS, Inst Math Jussieu Paris Rive Gauche, UMR 7586, F-75205 Paris 13, France
Teissier, Bernard
VALUATION THEORY IN INTERACTION,
2014,
: 474
-
565