Trees with Given Stability Number and Minimum Number of Stable Sets

被引:0
|
作者
Véronique Bruyère
Gwenaël Joret
Hadrien Mélot
机构
[1] Université de Mons,Institut d’Informatique
[2] UMONS,Département d’Informatique
[3] Université Libre de Bruxelles,undefined
[4] ULB,undefined
来源
Graphs and Combinatorics | 2012年 / 28卷
关键词
Stability number; Fibonacci number; Merrifield–Simmons index;
D O I
暂无
中图分类号
学科分类号
摘要
We study the structure of trees minimizing their number of stable sets for given order n and stability number α. Our main result is that the edges of a non-trivial extremal tree can be partitioned into n − α stars, each of size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lceil\frac{n-1}{n-\alpha}\rceil}$$\end{document} or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lfloor\frac{n-1}{n-\alpha}\rfloor}$$\end{document} , so that every vertex is included in at most two distinct stars, and the centers of these stars form a stable set of the tree.
引用
收藏
页码:167 / 187
页数:20
相关论文
共 50 条