An Overview of Important Practical Aspects of Continuous-Time ARMA System Identification

被引:0
|
作者
Erik K. Larsson
Magnus Mossberg
Torsten Soderstrom
机构
[1] Division of Systems and Control,
[2] Department of Information Technology,undefined
[3] Uppsala University,undefined
[4] P.O. Box 337,undefined
[5] SE-751 05 Uppsala,undefined
[6] Department of Electrical Engineering,undefined
[7] Karlstad University,undefined
[8] SE-651 88 Karlstad,undefined
关键词
System Identification; Estimation Result; Sampling Interval; Indirect Method; Special Focus;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of estimating the parameters in continuous-time autoregressive moving average (ARMA) processes from discrete-time data is considered. Both direct and indirect methods are studied, and similarities and differences are discussed. A general discussion of the inherent difficulties of the problem is given together with a comprehensive study on how the choice of the sampling interval influences the estimation result. A special focus is given to how the Cramer-Rao lower bound depends on the sampling interval.
引用
收藏
页码:17 / 46
页数:29
相关论文
共 50 条
  • [21] Limiting sampling results for continuous-time ARMA systems
    Larsson, EK
    INTERNATIONAL JOURNAL OF CONTROL, 2005, 78 (07) : 461 - 473
  • [22] A note on the covariance structure of a continuous-time ARMA process
    Tsai, HS
    Chan, KS
    STATISTICA SINICA, 2000, 10 (03) : 989 - 998
  • [23] A Subalgebraic Procedure for System Identification of a Continuous-Time Polynomial System
    van Schuppen, Jan H.
    Xi, Kaihua
    Nemcova, Jana
    IFAC PAPERSONLINE, 2018, 51 (15): : 395 - 400
  • [24] On a continuous-time system identification using optimization method
    Iwase, M
    Shiino, Y
    Hatakeyama, S
    SICE 2002: PROCEEDINGS OF THE 41ST SICE ANNUAL CONFERENCE, VOLS 1-5, 2002, : 1984 - 1988
  • [25] Continuous-time frequency domain subspace system identification
    VanOverschee, P
    DeMoor, B
    SIGNAL PROCESSING, 1996, 52 (02) : 179 - 194
  • [26] Optimal input design for continuous-time system identification
    Abrashov, Sergey
    Malti, Rachid
    Moreau, Xavier
    Moze, Mathieu
    Aioun, Francois
    Guillemard, Franck
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 60 : 92 - 99
  • [27] Continuous-time System Identification of a Flexible Cantilever Beam
    Pan, Siqi
    Quoc Chi Nguyen
    Van Thuat Nguyen
    Welsh, James S.
    5TH IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (IEEE CCTA 2021), 2021, : 868 - 873
  • [28] Continuous-Time System Identification using Binary Measurements
    Pouliquen, Mathieu
    Goudjil, Abdelhak
    Gehan, Olivier
    Pigeon, Eric
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 3787 - 3792
  • [29] Continuous-time system identification of a smoking cessation intervention
    Timms, Kevin P.
    Rivera, Daniel E.
    Collins, Linda M.
    Piper, Megan E.
    INTERNATIONAL JOURNAL OF CONTROL, 2014, 87 (07) : 1423 - 1437
  • [30] CONTINUOUS-TIME APPROACHES TO SYSTEM-IDENTIFICATION - A SURVEY
    UNBEHAUEN, H
    RAO, GP
    AUTOMATICA, 1990, 26 (01) : 23 - 35