Calabi Yau Hypersurfaces and SU-Bordism

被引:0
|
作者
Ivan Yu. Limonchenko
Zhi Lü
Taras E. Panov
机构
[1] Fudan University,School of Mathematical Sciences
[2] Moscow State University,Faculty of Mechanics and Mathematics
[3] Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre “Kurchatov Institute,Institute for Information Transmission Problems (Kharkevich Institute)
[4] ”,undefined
[5] Russian Academy of Sciences,undefined
[6] Bol’shoi Karetnyi per. 19,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
V. V. Batyrev constructed a family of Calabi–Yau hypersurfaces dual to the first Chern class in toric Fano varieties. Using this construction, we introduce a family of Calabi–Yau manifolds whose SU-bordism classes generate the special unitary bordism ring ΩSU[12]≅Z[12][yi:i≥2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega ^{SU}}[\frac{1}{2}] \cong Z[\frac{1}{2}][{y_i}:i \geqslant 2]$$\end{document}. We also describe explicit Calabi–Yau representatives for multiplicative generators of the SU-bordism ring in low dimensions.
引用
收藏
页码:270 / 278
页数:8
相关论文
共 50 条
  • [11] Machine learning Calabi-Yau hypersurfaces
    Berman, David S.
    He, Yang-Hui
    Hirst, Edward
    PHYSICAL REVIEW D, 2022, 105 (06)
  • [12] Fano hypersurfaces and Calabi-Yau supermanifolds
    Garavuso, Richard S.
    Kreuzer, Maximilian
    Noll, Alexander
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (03):
  • [13] On stokes matrices of Calabi-Yau hypersurfaces
    Doran, Charles F.
    Hosono, Shinobu
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 11 (01) : 147 - 174
  • [14] PERIODS OF TROPICAL CALABI-YAU HYPERSURFACES
    Yamamoto, Yuto
    JOURNAL OF ALGEBRAIC GEOMETRY, 2022, 31 (02) : 303 - 343
  • [15] CALABI-YAU COMPONENTS IN GENERAL TYPE HYPERSURFACES
    Leung, Naichung Conan
    Wan, Tom Y. H.
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2009, 83 (01) : 43 - 74
  • [16] Systematics of axion inflation in Calabi-Yau hypersurfaces
    Long, Cody
    McAllister, Liam
    Stout, John
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (02):
  • [17] Orbifold hodge numbers of Calabi-Yau hypersurfaces
    Poddar, M
    PACIFIC JOURNAL OF MATHEMATICS, 2003, 208 (01) : 151 - 167
  • [18] Systematics of axion inflation in Calabi-Yau hypersurfaces
    Cody Long
    Liam McAllister
    John Stout
    Journal of High Energy Physics, 2017
  • [19] The web of Calabi-Yau hypersurfaces in toric varieties
    Avram, AC
    Kreuzer, M
    Mandelberg, M
    Skarke, H
    NUCLEAR PHYSICS B, 1997, 505 (03) : 625 - 640
  • [20] Toric morphisras and fibrations of toric Calabi-Yau hypersurfaces
    Hu, Yi
    Liu, Chien-Hao
    Yau, Shing-Tung
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2002, 6 (03) : 457 - 505