Efficient computation of the Euler–Kronecker constants of prime cyclotomic fields

被引:0
|
作者
Alessandro Languasco
机构
[1] Università di Padova,Dipartimento di Matematica, “Tullio Levi
来源
关键词
Euler–Kronecker constants; Generalised Euler constants in arithmetic progressions; Application of the Fast Fourier Transform; Primary 11-04; secondary 11Y60;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a new algorithm, which is faster and requires less computing resources than the ones previously known, to compute the Euler–Kronecker constants Gq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {G}}_q$$\end{document} for the prime cyclotomic fields Q(ζq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb {Q}}(\zeta _q)$$\end{document}, where q is an odd prime and ζq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta _q$$\end{document} is a primitive q-root of unity. With such a new algorithm we evaluated Gq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {G}}_q$$\end{document} and Gq+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {G}}_q^+$$\end{document}, where Gq+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {G}}_q^+$$\end{document} is the Euler–Kronecker constant of the maximal real subfield of Q(ζq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}(\zeta _q)$$\end{document}, for some very large primes q thus obtaining two new negative values of Gq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {G}}_q$$\end{document}: G9109334831=-0.248739⋯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {G}}_{9109334831}= -0.248739\dotsc $$\end{document} and G9854964401=-0.096465⋯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {G}}_{9854964401}= -0.096465\dotsc $$\end{document} We also evaluated Gq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {G}}_q$$\end{document} and Gq+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {G}}^+_q$$\end{document} for every odd prime q≤106\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\le 10^6$$\end{document}, thus enlarging the size of the previously known range for Gq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {G}}_q$$\end{document} and Gq+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {G}}^+_q$$\end{document}. Our method also reveals that the difference Gq-Gq+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {G}}_q - {\mathfrak {G}}^+_q$$\end{document} can be computed in a much simpler way than both its summands, see Sect. 3.4. Moreover, as a by-product, we also computed Mq=maxχ≠χ0|L′/L(1,χ)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_q=\max _{\chi \ne \chi _0} \vert L^\prime /L(1,\chi ) \vert $$\end{document} for every odd prime q≤106\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\le 10^6$$\end{document}, where L(s,χ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(s,\chi )$$\end{document} are the Dirichlet L-functions, χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} run over the non trivial Dirichlet characters mod q and χ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _0$$\end{document} is the trivial Dirichlet character mod q. As another by-product of our computations, we will provide more data on the generalised Euler constants in arithmetic progressions.
引用
收藏
相关论文
共 50 条
  • [31] The Kummer ratio of the relative class number for prime cyclotomic fields
    Kandhil, Neelam
    Languasco, Alessandro
    Moree, Pieter
    Eddin, Sumaia Saad
    Sedunova, Alisa
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 538 (01)
  • [32] Computation of discrete logarithms in prime fields
    LaMacchia, B.A.
    Odlyzko, A.M.
    Designs, Codes and Cryptography, 1991, 1 (01)
  • [33] COMPUTATION OF DISCRETE LOGARITHMS IN PRIME FIELDS
    LAMACCHIA, BA
    ODLYZKO, AM
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 537 : 616 - 618
  • [34] 1ST FACTOR OF CLASS NUMBER OF PRIME CYCLOTOMIC FIELDS
    MASLEY, JM
    JOURNAL OF NUMBER THEORY, 1978, 10 (03) : 273 - 290
  • [35] Heuristics for class numbers of prime-power real cyclotomic fields
    Buhler, J
    Pomerance, C
    Robertson, L
    HIGH PRIMES AND MISDEMEANOURS: LECTURES IN HONOUR OF THE 60TH BIRTHDAY OF HUGH COWIE WILLIAMS, 2004, 41 : 149 - 157
  • [36] On the 2-part of the class numbers of cyclotomic fields of prime power conductors
    Ichimura, Humio
    Nakajima, Shoichi
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2012, 64 (01) : 317 - 342
  • [37] COMPUTATION OF THE 1ST FACTOR OF THE CLASS NUMBER OF CYCLOTOMIC FIELDS
    FUNG, G
    GRANVILLE, A
    WILLIAMS, HC
    JOURNAL OF NUMBER THEORY, 1992, 42 (03) : 297 - 312
  • [38] Explicit formulas and Euler constants on algebraic number fields
    Avdispahic, Muharem
    Smajlovic, Lejla
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2007, 11 (N07): : 13 - 20
  • [39] Explicit formulas and Euler constants on algebraic number fields
    Avdispahić, Muharem
    Smajlović, Lejla
    International Journal of Applied Mathematics and Statistics, 2007, 11 (NO7): : 13 - 20
  • [40] On divisibility of the class number h+ of the real cyclotomic fields of prime degree l
    Jakubec, S
    MATHEMATICS OF COMPUTATION, 1998, 67 (221) : 369 - 398