Evaluating the effectiveness of the MicroPlastic Sediment Separator (MPSS)

被引:0
|
作者
Julia A. Prume
Hannes Laermanns
Martin G. J. Löder
Christian Laforsch
Christina Bogner
Martin Koch
机构
[1] Philipps-Universität Marburg,Department of Physics
[2] University of Bayreuth,Bayreuth Graduate School of Mathematical and Natural Sciences (BayNAT)
[3] University of Cologne,Ecosystem Research Group, Institute of Geography, Faculty of Mathematics and Natural Sciences
[4] University of Bayreuth,Department of Animal Ecology I and BayCEER
来源
关键词
Microplastics; River sediments; Density separation; Sodium chloride; Size fractionation; QA/QC; Method validation; Positive control; Recovery rate; Stokes’ law;
D O I
10.1186/s43591-023-00073-3
中图分类号
学科分类号
摘要
Effective laboratory methods are a requirement to obtain accurate data on the contamination of the environment with microplastics. However, current methods often lack specification and validation of performance. The aim of this work was to provide the first evaluation of the effectiveness of the commercially available MicroPlastic Sediment Separator (MPSS) operated with sodium chloride. We performed density separation experiments with pristine plastic particles spiked into both commercial sand (experiment I) and natural river sediments (experiment II) and with environmental microplastics contained in natural river sediments (experiment III). The natural sediments were taken from the Lahn River in Germany, a medium-scale central European tributary. The pristine test particles were ground polypropylene fragments, sieved in three different size classes: larger than 1 mm, 0.5–1 mm, and 0.3–0.5 mm. In experiment I, the mean recovery rate was 97 % for particles of the largest size class (standard deviation s=6%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=6~\%$$\end{document}; n=30\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=30$$\end{document} per size class), but dropped to 75.33 % (s=21.29%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=21.29~\%$$\end{document}) in the medium and to 54 % (s=25%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=25~\%$$\end{document}) in the smallest size class. After density separation, 87 % of all unsuccessfully separated test particles were found at the inner walls of the MPSS. In experiment II, the recovery rate was not correlated with the particle size distribution of the natural river sediments. In experiment III, a subsequent second density separation step contributed on average 38 % (s=18%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=18~\%$$\end{document}; n=5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=5$$\end{document}) to the total number of extracted environmental microplastics. This study illuminates central aspects of a density separation and aims to contribute to quality improvements of recovery rate experiments and field studies for the generation of reliable data on microplastics in the environment.
引用
收藏
相关论文
共 50 条
  • [41] Numerical modeling of microplastic interaction with fine sediment under estuarine conditions
    Shiravani, G.
    Oberrecht, D.
    Roscher, L.
    Kernchen, S.
    Halbach, M.
    Gerriets, M.
    Scholz-Bottcher, B. M.
    Badewien, T. H.
    Wurpts, A.
    WATER RESEARCH, 2023, 231
  • [42] Microplastic contamination in water, sediment, and fish from the Kahayan River, Indonesia
    Zakiah
    Riani, Etty
    Taryono
    Cordova, Muhammad Reza
    CHEMISTRY AND ECOLOGY, 2024, 40 (06) : 697 - 720
  • [43] Assessment of microplastic pollution and polymer risk in the sediment compartment of the Limfjord, Denmark
    Simon-Sanchez, Laura
    Vianello, Alvise
    Kirstein, Inga V.
    Molazadeh, Marziyeh-Shabnam
    Lorenz, Claudia
    Vollertsen, Jes
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 950
  • [44] Microplastic Abundance and Distribution in the Sediment of Cagayan de Oro River, Philippines
    Gabriel, Aiza D.
    Bacosa, Hernando P.
    SOIL & SEDIMENT CONTAMINATION, 2024, 33 (08): : 1252 - 1268
  • [45] Environmentally relevant microplastic exposure affects sediment-dwelling bivalves
    Bour, Agathe
    Haarr, Ane
    Keiter, Steffen
    Hylland, Ketil
    ENVIRONMENTAL POLLUTION, 2018, 236 : 652 - 660
  • [46] The relation of sediment texture to macro- and microplastic abundance in intertidal zone
    Wahyuningsih, H.
    Bangun, A. P.
    Muhtadi, A.
    INTERNATIONAL CONFERENCE ON AGRICULTURE, ENVIRONMENT, AND FOOD SECURITY, 2018, 122
  • [47] Temporal and spatial distribution of microplastic in the sediment of the Han River, South Korea
    Park, Tae-Jin
    Kim, Moon-Kyung
    Lee, Seung-Hyun
    Kim, Mun-Ju
    Lee, Young-Sun
    Lee, Bo-Mi
    Seong, Ki-Seon
    Park, Ji-Hyoung
    Zoh, Kyung-Duk
    CHEMOSPHERE, 2023, 317
  • [48] Magnetic susceptibilites of suspended sediment and microplastic abundance in a tropical volcanic estuary
    Hamdan, Abd Mujahid
    Lubis, Syafrina Sari
    Nazla, Cut Taffazani
    Jaswita, Della
    Maulida, Zahratul
    Munandar, Aris
    Hamdi, Hamdi
    Ardiansyah, Ricky
    Khairuzzaman, Hari
    REGIONAL STUDIES IN MARINE SCIENCE, 2023, 61
  • [49] EVALUATING TEACHING EFFECTIVENESS
    DETORNYAY, R
    JOURNAL OF NURSING EDUCATION, 1984, 23 (05) : 177 - 177
  • [50] EVALUATING EFFECTIVENESS OF SCHOOLING
    HUBERMAN, M
    INTERNATIONAL REVIEW OF EDUCATION, 1973, 19 (03) : 357 - 371