Optimizing welding sequence with genetic algorithm

被引:0
|
作者
M. H. Kadivar
K. Jafarpur
G. H. Baradaran
机构
[1] Department of Mechanical Engineering,
[2] School of Engineering,undefined
[3] Shiraz University,undefined
[4] Shiraz,undefined
[5] Iran,undefined
来源
Computational Mechanics | 2000年 / 26卷
关键词
Experimental Data; Welding; Objective Function; Genetic Algorithm; Residual Stress;
D O I
暂无
中图分类号
学科分类号
摘要
The genetic algorithm method has been utilized with a thermomechanical model to determine an optimum welding sequence. The thermomechanical model developed for this purpose predicts residual stress and distortion in thin plates. The thermal history of the plate is computed using a transient two-dimensional finite element model which serves as an input to the mechanical analysis. The mechanical response of the plate is estimated through a thermoelastic-viscoplastic finite element model. The proposed model is verified by comparison with the experimental data where available. By choosing the appropriate objective function for the considered case, an optimum welding sequence is determined by a genetic algorithm.
引用
收藏
页码:514 / 519
页数:5
相关论文
共 50 条
  • [21] Cluster Energy Optimizing Genetic Algorithm
    Kazakova, Vera A.
    Wu, Annie S.
    Rahman, Talat S.
    GECCO'13: PROCEEDINGS OF THE 2013 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2013, : 1317 - 1324
  • [22] Optimizing fuzzy logic with genetic algorithm
    Uchibori, A
    Miyajima, K
    Shidama, Y
    Yamaura, H
    1998 SECOND INTERNATIONAL CONFERENCE ON KNOWLEDGE-BASED INTELLIGENT ELECTRONIC SYSTEMS, KES '98, PROCEEDINGS, VOL 2, 1998, : 126 - 131
  • [23] Genetic algorithm for optimizing service distributions
    Jurasovic, Kresimir
    Kusek, Mario
    NEUROCOMPUTING, 2010, 73 (4-6) : 661 - 668
  • [24] An optimizing fuzzy logic with genetic algorithm
    Uchibori, A
    Yamazaki, H
    Shidama, Y
    Yamaura, H
    1996 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION (ICEC '96), PROCEEDINGS OF, 1996, : 239 - 242
  • [25] Optimizing a radial visualization with a genetic algorithm
    Bouali, F.
    Serres, B.
    Guinot, C.
    Venturini, G.
    2020 24TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV 2020), 2020, : 409 - 414
  • [26] A Genetic Algorithm for Optimizing Hierarchical Menus
    Matsui, Shouichi
    Yamada, Seiji
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 2851 - +
  • [27] Optimizing machine stoppages by a genetic algorithm
    Dupas, R
    Fourmaux, D
    Goncalves, G
    COMPUTER AIDED CONTROL SYSTEMS DESIGN (CACSD'97), 1997, : 211 - 216
  • [28] Optimizing genetic algorithm for motif discovery
    Huo, Hongwei
    Zhao, Zhenhua
    Stojkovic, Vojislav
    Liu, Lifang
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (11-12) : 2011 - 2020
  • [29] Intelligent Modeling Combining Adaptive Neuro Fuzzy Inference System and Genetic Algorithm for Optimizing Welding Process Parameters
    Gowtham, K. N.
    Vasudevan, M.
    Maduraimuthu, V.
    Jayakumar, T.
    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2011, 42 (02): : 385 - 392
  • [30] Intelligent Modeling Combining Adaptive Neuro Fuzzy Inference System and Genetic Algorithm for Optimizing Welding Process Parameters
    K. N. Gowtham
    M. Vasudevan
    V. Maduraimuthu
    T. Jayakumar
    Metallurgical and Materials Transactions B, 2011, 42 : 385 - 392