Comments on: Transversality of the Shapley value

被引:0
|
作者
Michel Grabisch
机构
[1] Université de Paris I—Panthéon-Sorbonne,Centre d’Economie de la Sorbonne
关键词
Cooperative Game; Coalition Structure; Belief Function; Multicriteria Decision; Fuzzy Measure;
D O I
10.1007/s11750-008-0046-3
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] A Monotonic Weighted Shapley Value
    Conrado M. Manuel
    Daniel Martín
    Group Decision and Negotiation, 2020, 29 : 627 - 654
  • [32] The proportional Shapley value and applications
    Beal, Sylvain
    Ferrieres, Sylvain
    Remila, Eric
    Solal, Philippe
    GAMES AND ECONOMIC BEHAVIOR, 2018, 108 : 93 - 112
  • [33] Axiomatizations of the proportional Shapley value
    Manfred Besner
    Theory and Decision, 2019, 86 : 161 - 183
  • [34] Axiomatizations of the normalized Banzhaf value and the Shapley value
    René van den Brink
    Gerard van der Laan
    Social Choice and Welfare, 1998, 15 : 567 - 582
  • [35] Alternative forms of the Shapley value and the Shapley-Shubik index
    Felsenthal, DS
    Machover, M
    PUBLIC CHOICE, 1996, 87 (3-4) : 315 - 318
  • [36] Axiomatizations of the normalized Banzhaf value and the Shapley value
    van den Brink, R
    van der Laan, G
    SOCIAL CHOICE AND WELFARE, 1998, 15 (04) : 567 - 582
  • [37] The Shapley Value in Database Management
    Bertossi, Leopoldo
    Kimelfeld, Benny
    Livshits, Ester
    Monet, Mikael
    SIGMOD RECORD, 2023, 52 (02) : 6 - 17
  • [38] Axiomatizations of the proportional Shapley value
    Besner, Manfred
    THEORY AND DECISION, 2019, 86 (02) : 161 - 183
  • [39] The proportional partitional Shapley value
    Maria Alonso-Meijide, Jose
    Carreras, Francesc
    Costa, Julian
    Garcia-Jurado, Ignacio
    DISCRETE APPLIED MATHEMATICS, 2015, 187 : 1 - 11
  • [40] The Inverse Shapley Value Problem
    De, Anindya
    Diakonikolas, Ilias
    Servedio, Rocco
    AUTOMATA, LANGUAGES, AND PROGRAMMING, ICALP 2012 PT I, 2012, 7391 : 266 - 277