Dominated Compactness Theorem in Banach Function Spaces and its Applications

被引:0
|
作者
Humberto Rafeiro
Stefan Samko
机构
[1] Universidade do Algarve,Departamento de Matemática
来源
关键词
Compact operators; integral operator; Krasnoselskii theorem; compact majorant; regular operator; Banach function space; variable exponent Lebesgue space; potential operator; Primary 47B07; Secondary 47B38;
D O I
暂无
中图分类号
学科分类号
摘要
A famous dominated compactness theorem due to Krasnosel’skiĭ states that compactness of a regular linear integral operator in Lp follows from that of a majorant operator. This theorem is extended to the case of the spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p(\cdot)}(\Omega, \mu, \varrho), \mu \Omega < \infty$$\end{document}, with variable exponent p(·), where we also admit power type weights \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varrho$$\end{document}. This extension is obtained as a corollary to a more general similar dominated compactness theorem for arbitrary Banach function spaces for which the dual and associate spaces coincide. The result on compactness in the spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p(\cdot)}(\Omega, \mu, \varrho)$$\end{document} is applied to fractional integral operators over bounded open sets.
引用
收藏
页码:669 / 681
页数:12
相关论文
共 50 条
  • [11] Compactness in quasi-Banach function spaces and applications to compact embeddings of Besov-type spaces
    Caetano, Antonio
    Gogatishvili, Amiran
    Opic, Bohumir
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (05) : 905 - 927
  • [12] COMPACTNESS CONDITIONS FOR INTEGRAL OPERATORS IN BANACH FUNCTION SPACES
    GROBLER, JJ
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1970, 73 (04): : 287 - &
  • [13] Compactness Characterizations of Commutators on Ball Banach Function Spaces
    Jin Tao
    Dachun Yang
    Wen Yuan
    Yangyang Zhang
    Potential Analysis, 2023, 58 : 645 - 679
  • [14] Compactness in Banach function spaces: Poincaré and Friedrichs inequalities
    Bilalov, Bilal
    Mamedov, Eminaga
    Sezer, Yonca
    Nasibova, Natavan
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2025, 74 (01)
  • [15] Compactness in vector-valued banach function spaces
    van Neerven, Jan
    POSITIVITY, 2007, 11 (03) : 461 - 467
  • [16] Compactness Characterizations of Commutators on Ball Banach Function Spaces
    Tao, Jin
    Yang, Dachun
    Yuan, Wen
    Zhang, Yangyang
    POTENTIAL ANALYSIS, 2023, 58 (04) : 645 - 679
  • [17] Compactness in Vector-valued Banach Function Spaces
    Jan van Neerven
    Positivity, 2007, 11 : 461 - 467
  • [18] COMPACTNESS OF EMBEDDINGS BETWEEN BANACH-SPACES AND APPLICATIONS TO SOBOLEV SPACES
    CANAVATI, JA
    GALAZFONTES, F
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1990, 41 : 511 - 525
  • [20] Approximative compactness and continuity of metric projector in Banach spaces and applications
    Chen ShuTao
    Hudzik, Henryk
    Kowalewski, Wojciech
    Wang Yuwen
    Wisla, Marek
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (02): : 293 - 303