Using forward Monte-Carlo simulation for the valuation of American barrier options

被引:0
|
作者
Daniel Wei-Chung Miao
Yung-Hsin Lee
Jr-Yan Wang
机构
[1] National Taiwan University of Science and Technology,Graduate Institute of Finance
[2] Lunghwa University of Science and Technology,Industrial
[3] National Taiwan University,Academic Research and Development Center
来源
关键词
American barrier option; Forward Monte-Carlo method; Pseudo critical price; Sufficient indicator;
D O I
暂无
中图分类号
学科分类号
摘要
This paper extends the forward Monte-Carlo methods, which have been developed for the basic types of American options, to the valuation of American barrier options. The main advantage of these methods is that they do not require backward induction, the most time-consuming and memory-intensive step in the simulation approach to American options pricing. For these methods to work, we need to define the so-called pseudo critical prices which are used to determine whether early exercise should happen. In this study, we define a new and more flexible version of the pseudo critical prices which can be conveniently extended to all fourteen types of American barrier options. These pseudo critical prices are shown to satisfy the criteria of a sufficient indicator which guarantees the effectiveness of the proposed methods. A series of numerical experiments are provided to compare the performance between the forward and backward Monte-Carlo methods and demonstrate the computational advantages of the forward methods.
引用
收藏
页码:339 / 366
页数:27
相关论文
共 50 条
  • [11] MONTE-CARLO SIMULATION OF GAAS SCHOTTKY-BARRIER BEHAVIOR
    MAZIAR, CM
    LUNDSTROM, MS
    ELECTRONICS LETTERS, 1987, 23 (02) : 61 - 62
  • [12] FAST MONTE-CARLO SIMULATION USING A SUPERCOMPUTER
    HIDAKA, T
    HASEGAWA, S
    IDA, Y
    NEC RESEARCH & DEVELOPMENT, 1987, (85): : 23 - 28
  • [13] The valuation of American barrier options using the decomposition technique
    Gao, B
    Huang, JZ
    Subrahmanyam, M
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2000, 24 (11-12): : 1783 - 1827
  • [14] ANALYSIS OF SPECT USING MONTE-CARLO SIMULATION
    BECK, JW
    JASZCZAK, RJ
    STARMER, CF
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1982, 372 : 32 - 38
  • [15] Monte Carlo valuation of American options through computation of the optimal exercise frontier
    Ibáñez, A
    Zapatero, F
    JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS, 2004, 39 (02) : 253 - 275
  • [16] Forward indifference valuation of American options
    Leung, Tim
    Sircar, Ronnie
    Zariphopoulou, Thaleia
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2012, 84 (5-6) : 741 - 770
  • [17] Fuzzy Real Options for Risky Project Evaluation Using Least Squares Monte-Carlo Simulation
    Wang, Qian
    Kilgour, D. Marc
    Hipel, Keith W.
    IEEE SYSTEMS JOURNAL, 2011, 5 (03): : 385 - 395
  • [18] Valuation of American partial barrier options
    Doobae Jun
    Hyejin Ku
    Review of Derivatives Research, 2013, 16 : 167 - 191
  • [19] Valuation of American partial barrier options
    Jun, Doobae
    Ku, Hyejin
    REVIEW OF DERIVATIVES RESEARCH, 2013, 16 (02) : 167 - 191
  • [20] MONTE-CARLO SIMULATION OF WATER
    LADD, AJC
    MOLECULAR PHYSICS, 1977, 33 (04) : 1039 - 1050