Spectrum of the Laplacian with weights

被引:0
|
作者
Bruno Colbois
Ahmad El Soufi
机构
[1] Université de Neuchâtel,Laboratoire de Mathématiques
[2] Université de Tours,Laboratoire de Mathématiques et Physique Théorique, UMR
来源
Annals of Global Analysis and Geometry | 2019年 / 55卷
关键词
Eigenvalue; Laplacian; Density; Cheeger inequality; Upper bounds; 35P15; 58J50;
D O I
暂无
中图分类号
学科分类号
摘要
Given a compact Riemannian manifold (M, g) and two positive functions ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} and σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}, we are interested in the eigenvalues of the Dirichlet energy functional weighted by σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}, with respect to the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} inner product weighted by ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}. Under some regularity conditions on ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} and σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}, these eigenvalues are those of the operator -ρ-1div(σ∇u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ -\rho ^{-1} \text{ div }(\sigma \nabla u) $$\end{document} with Neumann conditions on the boundary if ∂M≠∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial M\ne \emptyset $$\end{document}. We investigate the effect of the weights on eigenvalues and discuss the existence of lower and upper bounds under the condition that the total mass is preserved.
引用
收藏
页码:149 / 180
页数:31
相关论文
共 50 条
  • [21] AMENABILITY AND THE SPECTRUM OF THE LAPLACIAN
    BROOKS, R
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 6 (01) : 87 - 89
  • [22] The spectrum of the Laplacian on the pentagasket
    Adams, B
    Smith, SA
    Strichartz, RS
    Teplyaev, A
    FRACTALS IN GRAZ 2001: ANALYSIS - DYNAMICS - GEOMETRY - STOCHASTICS, 2003, : 1 - 24
  • [23] The Laplacian spectrum of a graph
    Das, KC
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (5-6) : 715 - 724
  • [24] Laplacian Spectrum Learning
    Shivaswamy, Pannagadatta K.
    Jebara, Tony
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT III, 2010, 6323 : 261 - 276
  • [25] On the spectrum of the hierarchical Laplacian
    Bendikov, Alexander
    Krupski, Pawel
    POTENTIAL ANALYSIS, 2014, 41 (04) : 1247 - 1266
  • [26] THE LAPLACIAN SPECTRUM OF A GRAPH
    GRONE, R
    MERRIS, R
    SUNDER, VS
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) : 218 - 238
  • [27] SPECTRUM OF THE LAPLACIAN ON A GRAPH
    ROTH, JP
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 296 (19): : 793 - 795
  • [28] On distance and Laplacian matrices of trees with matrix weights
    Atik, Fouzul
    Kannan, M. Rajesh
    Bapat, Ravindra B.
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (14): : 2607 - 2619
  • [29] On some forests determined by their Laplacian or signless Laplacian spectrum
    Simic, Slobodan K.
    Stanic, Zoran
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (01) : 171 - 178
  • [30] EIGENVALUE PROBLEMS FOR THE P-LAPLACIAN WITH INDEFINITE WEIGHTS
    Cuesta, Mabel
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2001,