Spectrum of the Laplacian with weights

被引:0
|
作者
Bruno Colbois
Ahmad El Soufi
机构
[1] Université de Neuchâtel,Laboratoire de Mathématiques
[2] Université de Tours,Laboratoire de Mathématiques et Physique Théorique, UMR
来源
关键词
Eigenvalue; Laplacian; Density; Cheeger inequality; Upper bounds; 35P15; 58J50;
D O I
暂无
中图分类号
学科分类号
摘要
Given a compact Riemannian manifold (M, g) and two positive functions ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} and σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}, we are interested in the eigenvalues of the Dirichlet energy functional weighted by σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}, with respect to the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} inner product weighted by ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}. Under some regularity conditions on ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} and σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}, these eigenvalues are those of the operator -ρ-1div(σ∇u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ -\rho ^{-1} \text{ div }(\sigma \nabla u) $$\end{document} with Neumann conditions on the boundary if ∂M≠∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial M\ne \emptyset $$\end{document}. We investigate the effect of the weights on eigenvalues and discuss the existence of lower and upper bounds under the condition that the total mass is preserved.
引用
收藏
页码:149 / 180
页数:31
相关论文
共 50 条
  • [1] Spectrum of the Laplacian with weights
    Colbois, Bruno
    El Soufi, Ahmad
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2019, 55 (02) : 149 - 180
  • [3] On the Fucik spectrum of the scalar p-Laplacian with indefinite integrable weights
    Chen, Wei
    Chu, Jifeng
    Yan, Ping
    Zhang, Meirong
    BOUNDARY VALUE PROBLEMS, 2014,
  • [4] On the Fučík spectrum of the scalar p-Laplacian with indefinite integrable weights
    Wei Chen
    Jifeng Chu
    Ping Yan
    Meirong Zhang
    Boundary Value Problems, 2014
  • [5] A combinatorial Laplacian with vertex weights
    Chung, FRK
    Langlands, RP
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1996, 75 (02) : 316 - 327
  • [6] On the spectrum of the Laplacian
    Nelia Charalambous
    Zhiqin Lu
    Mathematische Annalen, 2014, 359 : 211 - 238
  • [7] On the spectrum of the Laplacian
    Charalambous, Nelia
    Lu, Zhiqin
    MATHEMATISCHE ANNALEN, 2014, 359 (1-2) : 211 - 238
  • [8] Joint Laplacian feature weights learning
    Yan, Hui
    Yang, Jian
    PATTERN RECOGNITION, 2014, 47 (03) : 1425 - 1432
  • [9] On the essential spectrum of the Laplacian and the drifted Laplacian
    Silvares, Leonardo
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (06) : 3906 - 3936
  • [10] Laplacian Controllability for Graphs with Integral Laplacian Spectrum
    Zoran Stanić
    Mediterranean Journal of Mathematics, 2021, 18