Solvothermal controllable synthesis of polymorphic manganese oxalate anode for lithium-ion batteries

被引:0
|
作者
Yong Zhang
Liang-jin Wei
Zhen-Zhen Liu
Jing Su
Yun-Fei Long
Xiao-Yan Lv
Yan-Xuan Wen
机构
[1] Guangxi University,School of Chemistry and Chemical Engineering
[2] Guangxi University,The New Rural Development Research Institute
[3] Guangxi University,Guangxi Key Laboratory of Processing for Non
来源
Ionics | 2022年 / 28卷
关键词
Lithium-ion batteries; Anode; MnC; O; Solvothermal synthesis;
D O I
暂无
中图分类号
学科分类号
摘要
Manganese oxalate is a low-cost and high-capacity anode for lithium-ion batteries (LIBs). However, its performance is limited by the low conductivity and the volume change during charge/discharge processes. Herein, polymorphic manganese oxalates were controllably synthesized by a solvothermal process. Monoclinic α-MnC2O4·2H2O with space group C2/c can be prepared with the reactant concentration below 0.2 mol·L−1, while orthonormal MnC2O4·3H2O with space group Pcaa can be prepared with the reactant concentration above 0.2 mol·L−1. After removing crystal water, MnC2O4·2H2O and MnC2O4·3H2O are transformed into orthonormal MnC2O4. When the reactant concentration increases from 0.1 to 0.3 mol·L−1, manganese oxalate changes from rods to cubes, and its specific surface area and pore volume first increase and then decrease. Mesoporous MnC2O4 rod prepared at 0.2 mol·L−1 has a larger specific surface area and pore volume. This rod-like sample can maintain 920 and 790 mAh·g−1 after 300 cycles 2 and 5 A·g−1, respectively, exhibiting higher specific capacity, better cycle stability, and better rate performance. Therefore, the prepared mesoporous MnC2O4 rod can potentially apply in high-energy–density LIBs.
引用
收藏
页码:3603 / 3614
页数:11
相关论文
共 50 条
  • [31] Solvothermal synthesis and electrochemical properties of lithium-ion batteries anode materials CNT-ZnFe2O4
    State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, China
    不详
    不详
    Faguang Xuebao, 6 (732-736):
  • [32] Solvothermal Synthesis of Porous MnF2 Hollow Spheroids as Anode Materials for Sodium-/Lithium-Ion Batteries
    Wei, Yiyong
    Ma, Xiaohang
    Huang, Xiaotong
    Zhao, Bangchuan
    Zhu, Xuebin
    Liang, Changhao
    Zi, Zhenfa
    Dai, Jianming
    CHEMELECTROCHEM, 2019, 6 (10) : 2726 - 2732
  • [33] Solvothermal synthesis of Li3VO4: Morphology control and electrochemical performance as anode for lithium-ion batteries
    Yang, Guang
    Feng, Jianyong
    Zhang, Bowei
    Aravindan, Vanchiappan
    Peng, Dongdong
    Cao, Xun
    Yu, Hao
    Madhavi, Srinivasan
    Huang, Yizhong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (34) : 22167 - 22174
  • [34] Lithium Manganese Spinel Cathodes for Lithium-Ion Batteries
    Huang, Yimeng
    Dong, Yanhao
    Li, Sa
    Lee, Jinhyuk
    Wang, Chao
    Zhu, Zhi
    Xue, Weijiang
    Li, Yao
    Li, Ju
    ADVANCED ENERGY MATERIALS, 2021, 11 (02)
  • [35] Anode materials for lithium-ion batteries: A review
    Nzereogu, P. U.
    Omah, A. D.
    Ezema, F. I.
    Iwuoha, E. I.
    Nwanya, A. C.
    APPLIED SURFACE SCIENCE ADVANCES, 2022, 9
  • [36] Overview of Graphene as Anode in Lithium-Ion Batteries
    Ri-Peng Luo
    Wei-Qiang Lyu
    Ke-Chun Wen
    Wei-Dong He
    JournalofElectronicScienceandTechnology, 2018, 16 (01) : 57 - 68
  • [37] Hydrothermal synthesis of SnO nanoflakes as anode materials for lithium-ion batteries
    Zhu, Luming
    Yang, Hong
    Jin, Dalai
    Zhu, Hongliang
    INORGANIC MATERIALS, 2007, 43 (12) : 1307 - 1312
  • [38] Silicene: A Promising Anode for Lithium-Ion Batteries
    Zhuang, Jincheng
    Xu, Xun
    Peleckis, Germanas
    Hao, Weichang
    Dou, Shi Xue
    Du, Yi
    ADVANCED MATERIALS, 2017, 29 (48)
  • [39] Facile synthesis of MnO/C anode materials for lithium-ion batteries
    Liu, Yamin
    Zhao, Xiuyun
    Li, Fan
    Xia, Dingguo
    ELECTROCHIMICA ACTA, 2011, 56 (18) : 6448 - 6452
  • [40] Hydrothermal synthesis of SnO nanoflakes as anode materials for lithium-ion batteries
    Luming Zhu
    Hong Yang
    Dalai Jin
    Hongliang Zhu
    Inorganic Materials, 2007, 43 : 1307 - 1312