A survey of swarm and evolutionary computing approaches for deep learning

被引:0
|
作者
Ashraf Darwish
Aboul Ella Hassanien
Swagatam Das
机构
[1] Helwan University,Faculty of Science, Scientific Research Group in Egypt (SRGE)
[2] Cairo University,Faculty of Computers and Information, Scientific Research Group in Egypt (SRGE)
[3] Indian Statistical Institute,Electronics and Communication Sciences Unit
来源
关键词
Deep learning; Metaheuristic algorithms; Artificial neural networks; Deep neural networks; Evolutionary computing; Swarm intelligence;
D O I
暂无
中图分类号
学科分类号
摘要
Deep learning (DL) has become an important machine learning approach that has been widely successful in many applications. Currently, DL is one of the best methods of extracting knowledge from large sets of raw data in a (nearly) self-organized manner. The technical design of DL depends on the feed-forward information flow principle of artificial neural networks with multiple layers of hidden neurons, which form deep neural networks (DNNs). DNNs have various architectures and parameters and are often developed for specific applications. However, the training process of DNNs can be prolonged based on the application and training set size (Gong et al. 2015). Moreover, finding the most accurate and efficient architecture of a deep learning system in a reasonable time is a potential difficulty associated with this approach. Swarm intelligence (SI) and evolutionary computing (EC) techniques represent simulation-driven non-convex optimization frameworks with few assumptions based on objective functions. These methods are flexible and have been proven effective in many applications; therefore, they can be used to improve DL by optimizing the applied learning models. This paper presents a comprehensive survey of the most recent approaches involving the hybridization of SI and EC algorithms for DL, the architecture of DNNs, and DNN training to improve the classification accuracy. The paper reviews the significant roles of SI and EC in optimizing the hyper-parameters and architectures of a DL system in context to large scale data analytics. Finally, we identify some open problems for further research, as well as potential issues related to DL that require improvements, and an extensive bibliography of the pertinent research is presented.
引用
收藏
页码:1767 / 1812
页数:45
相关论文
共 50 条
  • [41] Fintech Sentiment Analysis using Deep Learning Approaches: a Survey
    Anis, Sarah
    Morsey, Mohamed Mabrouk
    Aref, Mostafa
    2024 5TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, ROBOTICS AND CONTROL, AIRC 2024, 2024, : 118 - 122
  • [42] Survey on Deep Learning Approaches for Detection of Email Security Threat
    Saeed, Mozamel M.
    Al Aghbari, Zaher
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 77 (01): : 325 - 348
  • [43] Automatic Speech Recognition: A survey of deep learning techniques and approaches
    Ahlawat, Harsh
    Aggarwal, Naveen
    Gupta, Deepti
    International Journal of Cognitive Computing in Engineering, 2025, 6 : 201 - 237
  • [44] A survey on deep reinforcement learning approaches for traffic signal control
    Zhao, Haiyan
    Dong, Chengcheng
    Cao, Jian
    Chen, Qingkui
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [45] A Survey of Deep Learning Approaches for Pedestrian Detection in Autonomous Systems
    Sukkar, Majdi
    Jadeja, Rajendrasinh
    Shukla, Madhu
    Mahadeva, Rajesh
    IEEE ACCESS, 2025, 13 : 3994 - 4007
  • [46] Survey on crop pest detection using deep learning and machine learning approaches
    Chithambarathanu, M.
    Jeyakumar, M. K.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (27) : 42277 - 42310
  • [47] Denoising Medical Images Using Machine Learning, Deep Learning Approaches: A Survey
    Arshaghi, Ali
    Ashourian, Mohsen
    Ghabeli, Leila
    CURRENT MEDICAL IMAGING, 2021, 17 (05) : 578 - 594
  • [48] Traffic management approaches using machine learning and deep learning techniques: A survey
    Almukhalfi, Hanan
    Noor, Ayman
    Noor, Talal H.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [49] Survey on crop pest detection using deep learning and machine learning approaches
    M. Chithambarathanu
    M. K. Jeyakumar
    Multimedia Tools and Applications, 2023, 82 : 42277 - 42310
  • [50] Cognitive population initialization for swarm intelligence and evolutionary computing
    Muhammad Arif
    Jianer Chen
    Guojun Wang
    Hafiz Tayyab Rauf
    Journal of Ambient Intelligence and Humanized Computing, 2022, 13 : 5847 - 5860