Consistent Lyapunov exponent Estimation for one-dimensional dynamical systems

被引:0
|
作者
Salim Lardjane
机构
[1] Université de Bretagne Sud & CREST CREST,Laboratoire de Statistique et Modélisation ENSAI
来源
Computational Statistics | 2004年 / 19卷
关键词
Dynamical Systems; Chaos; Ergodicity; Lyapunov Exponent; Nearest Neighbors Estimation;
D O I
暂无
中图分类号
学科分类号
摘要
The author proves the consistency of a nearest neighbor estimator of the Lyapunov exponent for a general class of one-dimensional ergodic dynamical systems. The author shows that this estimator has good practical properties on a set of simulations.
引用
收藏
页码:159 / 168
页数:9
相关论文
共 50 条
  • [21] Lyapunov type stability and Lyapunov exponent for exemplary multiplicative dynamical systems
    Dorota Aniszewska
    Marek Rybaczuk
    Nonlinear Dynamics, 2008, 54 : 345 - 354
  • [22] Lyapunov type stability and Lyapunov exponent for exemplary multiplicative dynamical systems
    Aniszewska, Dorota
    Rybaczuk, Marek
    NONLINEAR DYNAMICS, 2008, 54 (04) : 345 - 354
  • [23] MAXIMAL ONE-DIMENSIONAL LYAPUNOV EXPONENT AND SINGULAR-POINT ANALYSIS FOR A QUARTIC HAMILTONIAN
    STEEB, WH
    LOUW, JA
    VILLET, CM
    PHYSICAL REVIEW A, 1986, 34 (04): : 3489 - 3491
  • [24] Lyapunov exponent and density of states of a one-dimensional non-Hermitian Schrodinger equation
    Derrida, B
    Jacobsen, JL
    Zeitak, R
    JOURNAL OF STATISTICAL PHYSICS, 2000, 98 (1-2) : 31 - 55
  • [25] Computing the distribution of the Lyapunov exponent from time series: The one-dimensional case study
    Lai, DJ
    Chen, GR
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (06): : 1721 - 1726
  • [26] Lyapunov exponent and the localized properties of electronic states of one-dimensional disordered binary alloy
    Liu Xiao-Liang
    Xu Hui
    Ma Song-Shan
    Deng Chao-Sheng
    MODERN PHYSICS LETTERS B, 2006, 20 (26): : 1693 - 1702
  • [27] LOCALIZATION FOR THE ONE-DIMENSIONAL ANDERSON MODEL VIA POSITIVITY AND LARGE DEVIATIONS FOR THE LYAPUNOV EXPONENT
    Bucaj, Valmir
    Damanik, David
    Fillman, Jake
    Gerbuz, Vitaly
    Vandenboom, Tom
    Wang, Fengpeng
    Zhang, Zhenghe
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (05) : 3619 - 3667
  • [28] Dynamical critical exponent of the one-dimensional random transverse-Ising model
    Asakawa, H
    PHYSICA A, 1996, 233 (1-2): : 39 - 59
  • [29] The largest Lyapunov exponent of dynamical systems with time delay
    Stefanski, A
    Kapitaniak, T
    Dabrowski, A
    IUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics, 2005, 122 : 493 - 500
  • [30] Dynamical critical exponent of the one-dimensional random transverse-Ising model
    Univ of Tokyo, Tokyo, Japan
    Physica A: Statistical Mechanics and its Applications, 1996, 233 (1-2): : 39 - 59