Evidence of compositional fluctuation induced relaxor antiferroelectric to antiferroelectric ordering in Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 based lead free ferroelectric

被引:0
|
作者
Lagen Kumar Pradhan
Rabichandra Pandey
Sunil Kumar
Suman Kumari
Manoranjan Kar
机构
[1] Indian Institute of Technology Patna,Department of Physics
来源
Journal of Materials Science: Materials in Electronics | 2019年 / 30卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The high temperature electrical phase transitions of (1 − x) Bi0.5Na0.5TiO3–(x) Bi0.5K0.5TiO3 (x = 0.10, 0.15, 0.20, 0.25, 0.30 and 0.35) relaxor ferroelectrics have been investigated by employing the dielectric spectroscopy technique. The Rietveld refinement of the XRD patterns reveals the increase of the lattice distortion (c/a) from 1.001 to 1.006 in the tetragonal crystal symmetry (P4mm) with the increase of the BKT (x = 0.10, 0.15, 0.20, 0.25, 0.30 and 0.35) mole fraction. The different bonds vibration (Bi3+/Na+/K+–O and Ti4+–O) related to phonon modes have been studied by analyzing the Raman spectra. The relaxor antiferroelectric ordering temperature (Td: depolarization temperature) of Bi0.5Na0.5TiO3 (BNT) reduce from ~ 200 to ~ 91 °C with the increase of the BKT mole fraction. This observation is well correlated to the formation of polar nanoregions (PNRs) due to the compositional fluctuation in the local crystal structure. Also, Td varies with the frequency of the applied electric. It suggests the presence of the PNRs and, subsequently exhibits the relaxor ferroelectric behavior. The activation energy to activate the PNRs reduces from 2.573 to 2.383 meV with the increase of the BKT mole fraction in the solid solutions. Reduction in remanent electrical polarization and the electrical coercive field in temperature dependent ferroelectric hysteresis loops suggest the relaxor antiferroelectric behavior of the solid solutions (x ≥ 0.15) near the depolarization temperature.
引用
收藏
页码:9547 / 9557
页数:10
相关论文
共 50 条
  • [21] Investigation of a peculiar relaxor ferroelectric:: Na0.5Bi0.5TiO3.
    Jones, GO
    Kreisel, J
    Jennings, V
    Geday, MA
    Thomas, PA
    Glazer, AM
    FERROELECTRICS, 2002, 270 : 191 - 196
  • [22] Structure, electrical properties and temperature characteristics of Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3-Bi0.5Li0.5TiO3 lead-free piezoelectric ceramics
    Lin, Dunmin
    Zheng, Qiaoji
    Xu, Chenggang
    Kwok, K. W.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2008, 93 (02): : 549 - 558
  • [23] Defect induced room temperature ferromagnetism in lead-free ferroelectric Bi0.5K0.5TiO3 materials
    Tuan, N. H.
    Thiet, D. V.
    Odkhuu, D.
    Bac, L. H.
    Binh, P. V.
    Dung, D. D.
    PHYSICA B-CONDENSED MATTER, 2018, 532 : 108 - 114
  • [24] Structural and Dielectric Properties of Lead Free Bi0.5Na0.5TiO3 Ceramics
    Pattipaka, Srinivas
    Mahesh, P.
    Pamu, D.
    INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015), 2016, 1728
  • [25] Piezoelectric and ferroelectric properties of Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3-BaTiO3 piezoelectric ceramics
    Li, YM
    Chen, W
    Xu, Q
    Zhou, J
    Gu, XY
    MATERIALS LETTERS, 2005, 59 (11) : 1361 - 1364
  • [26] Relaxor ground state forced by ferroelastic instability in K0.5 Bi0.5TiO3-Na0.5Bi0.5TiO3
    Das Adhikary, Gobinda
    Mahale, Bhoopesh
    Senyshyn, Anatoliy
    Ranjan, Rajeev
    PHYSICAL REVIEW B, 2020, 102 (18)
  • [27] Growth, Properties and Applications of Bi0.5Na0.5TiO3 Ferroelectric Nanomaterials
    Liu, Yuan
    Ji, Yun
    Yang, Ya
    NANOMATERIALS, 2021, 11 (07)
  • [28] The synthesis of lead-free ferroelectric Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 thin films by sol-gel method
    Yu, T.
    Kwok, K. W.
    Chan, H. L. W.
    MATERIALS LETTERS, 2007, 61 (10) : 2117 - 2120
  • [29] Dielectric and piezoelectric properties of Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3-NaNbO3 lead-free ceramics
    Li, YM
    Chen, W
    Xu, Q
    Zhou, J
    Sun, HJ
    Liao, MS
    JOURNAL OF ELECTROCERAMICS, 2005, 14 (01) : 53 - 58
  • [30] High photocurrent densities in Bi0.5Na0.5TiO3 ferroelectric semiconductors
    Zhong, Mingqiang
    Yuan, Changlai
    Liu, Xiao
    Zhu, Baohua
    Meng, Liufang
    Zhou, Changrong
    Liu, Fei
    Xu, Jiwen
    Wang, Jiang
    Rao, Guanghui
    MATERIALS LETTERS, 2021, 287