Sidon Basis in Polynomial Rings over Finite Fields

被引:0
|
作者
Wentang Kuo
Shuntaro Yamagishi
机构
[1] University of Waterloo,Department of Pure Mathematics
[2] Utrecht University,Mathematical Institute
来源
关键词
Sidon set; additive basis; polynomial rings over finite fields; 11K31; 11B83; 11T55;
D O I
暂无
中图分类号
学科分类号
摘要
Let Fq[t]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_q}\left[ t \right]$$\end{document} denote the polynomial ring over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_q}$$\end{document}, the finite field of q elements. Suppose the characteristic of Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_q}$$\end{document} is not 2 or 3. We prove that there exist infinitely many N ∈ ℕ such that the set {f∈Fq[t]:degf<N}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {f \in {\mathbb{F}_q}\left[ t \right]:\deg f < N} \right\}$$\end{document} contains a Sidon set which is an additive basis of order 3.
引用
收藏
页码:555 / 562
页数:7
相关论文
共 50 条
  • [41] More on Codes Over Finite Quotients of Polynomial Rings
    Kadhim Al-Lami, Emad
    Sobhani, Reza
    Abdollahi, Alireza
    Bagherian, Javad
    IEEE ACCESS, 2025, 13 : 15339 - 15345
  • [42] Complexity of polynomial multiplication over finite fields
    Kaminski, Michael
    COMPUTER SCIENCE - THEORY AND APPLICATIONS, 2006, 3967 : 2 - 2
  • [43] On the Dispersions of the Polynomial Maps over Finite Fields
    Schauz, Uwe
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [44] ON POLYNOMIAL FACTORIZATION OVER FINITE-FIELDS
    GUNJI, H
    ARNON, D
    MATHEMATICS OF COMPUTATION, 1981, 36 (153) : 281 - 287
  • [45] Unimodular polynomial matrices over finite fields
    Akansha Arora
    Samrith Ram
    Ayineedi Venkateswarlu
    Journal of Algebraic Combinatorics, 2021, 53 : 1299 - 1312
  • [46] Faster Polynomial Multiplication over Finite Fields
    Harvey, David
    van der Hoeven, Joris
    Lecerf, Gregoire
    JOURNAL OF THE ACM, 2017, 63 (06)
  • [47] POLYNOMIAL CODES OVER CERTAIN FINITE FIELDS
    REED, IS
    SOLOMON, G
    JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1960, 8 (02): : 300 - 304
  • [48] Linearized polynomial maps over finite fields
    Berson, Joost
    JOURNAL OF ALGEBRA, 2014, 399 : 389 - 406
  • [49] Reduction-Free Multiplication for Finite Fields and Polynomial Rings
    Madrigal, Samira Carolina Oliva
    Saldamli, Gökay
    Li, Chen
    Geng, Yue
    Tian, Jing
    Wang, Zhongfeng
    Koc, Cetin Kaya
    ARITHMETIC OF FINITE FIELDS, WAIFI 2022, 2023, 13638 : 53 - 78
  • [50] On *-clean group rings over finite fields
    Han, Dongchun
    Zhang, Hanbin
    FINITE FIELDS AND THEIR APPLICATIONS, 2021, 73