Sidon Basis in Polynomial Rings over Finite Fields

被引:0
|
作者
Wentang Kuo
Shuntaro Yamagishi
机构
[1] University of Waterloo,Department of Pure Mathematics
[2] Utrecht University,Mathematical Institute
来源
关键词
Sidon set; additive basis; polynomial rings over finite fields; 11K31; 11B83; 11T55;
D O I
暂无
中图分类号
学科分类号
摘要
Let Fq[t]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_q}\left[ t \right]$$\end{document} denote the polynomial ring over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_q}$$\end{document}, the finite field of q elements. Suppose the characteristic of Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_q}$$\end{document} is not 2 or 3. We prove that there exist infinitely many N ∈ ℕ such that the set {f∈Fq[t]:degf<N}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {f \in {\mathbb{F}_q}\left[ t \right]:\deg f < N} \right\}$$\end{document} contains a Sidon set which is an additive basis of order 3.
引用
收藏
页码:555 / 562
页数:7
相关论文
共 50 条