Partial sum process for records

被引:0
|
作者
Bose A. [1 ]
Gangopadhyay S. [1 ]
Sarkar A. [2 ]
机构
[1] Theoretical Statistics and Mathematics Unit, Indian Statistical Insitute, Kolkata 700108
[2] Theoretical Statistics and Mathematics Unit, Indian Statistical Institute (Delhi Centre), New Delhi 110016
关键词
D(0,1]-valued process; Domain of attraction; Records; Regularly varying function; Slowly varying function;
D O I
10.1007/s10687-005-4859-2
中图分类号
学科分类号
摘要
Suppose the upper records {XLn} from a sequence of i.i.d. random variables is in the domain of attraction of a normal distribution. Consider the D(0,1]-valued process {Z n (•)} constructed by usual interpolation of the partial sums of the records. We prove that under some mild conditions, {Z n } converges to a limiting Gaussian process in D(0,1]. As a consequence, the partial sums of records is asymptotically normal. © 2005 Springer Science + Business Media, Inc.
引用
收藏
页码:43 / 56
页数:13
相关论文
共 50 条
  • [21] Joint asymptotic distribution of exceedances point process and partial sum of stationary Gaussian sequence
    TAN Zhongquan PENG Zuoxiang Department of MathematicsZunyi Normal CollegeZunyi China Department of MathematicsSoochow UniversitySuzhou China School of Mathematics and StatisticsSouthwest UniversityChongqing China
    Applied Mathematics:A Journal of Chinese Universities(Series B), 2011, 26 (03) : 319 - 326
  • [22] Joint asymptotic distribution of exceedances point process and partial sum of stationary Gaussian sequence
    Tan Zhong-quan
    Peng Zuo-xiang
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2011, 26 (03) : 319 - 326
  • [23] Joint asymptotic distribution of exceedances point process and partial sum of stationary Gaussian sequence
    Zhong-quan Tan
    Zuo-xiang Peng
    Applied Mathematics-A Journal of Chinese Universities, 2011, 26 : 319 - 326
  • [24] Distance between the first and the last passage time of a partial sum process at level t
    AlvarezAndrade, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (01): : 111 - 116
  • [25] Partial sum of Dedekiad sums
    Zhang, WP
    Yi, Y
    PROGRESS IN NATURAL SCIENCE, 2000, 10 (07) : 551 - 557
  • [26] Partial sum of Dedekind sums
    Zhang, Wenpeng
    Yi, Yuan
    Progress in Natural Science, 2000, 10 (07) : 556 - 557
  • [27] kth Power of a Partial Sum
    Plaza, Angel
    AMERICAN MATHEMATICAL MONTHLY, 2019, 126 (05): : 467 - 467
  • [28] Equisizable partial sum families
    Ricardo Grande
    István Kovács
    Klavdija Kutnar
    Aleksander Malnič
    Luis Martínez
    Dragan Marušič
    Journal of Algebraic Combinatorics, 2020, 51 : 273 - 296
  • [29] Equisizable partial sum families
    Grande, Ricardo
    Kovacs, Istvan
    Kutnar, Klavdija
    Malnic, Aleksander
    Martinez, Luis
    Marusic, Dragan
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2020, 51 (02) : 273 - 296
  • [30] Partial sum of Dedekind sums
    张文鹏
    易媛
    ProgressinNaturalScience, 2000, (07) : 73 - 79