On the exact l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{1}$$\end{document} penalty function method for convex nonsmooth optimization problems with fuzzy objective function

被引:0
|
作者
Tadeusz Antczak
机构
[1] University of Łódź,Faculty of Mathematics and Computer Science
关键词
Nonsmooth optimization problem with fuzzy objective function; Exact ; penalty function method; Fuzzy penalized optimization problem; Exactness of the penalization; Convex fuzzy function;
D O I
10.1007/s00500-022-07459-0
中图分类号
学科分类号
摘要
In this paper, the convex nonsmooth optimization problem with fuzzy objective function and both inequality and equality constraints is considered. The Karush–Kuhn–Tucker necessary optimality conditions are proved for such a nonsmooth extremum problem. Further, the exact l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{1}$$\end{document} penalty function method is used for solving the considered nonsmooth fuzzy optimization problem. Therefore, its associated fuzzy penalized optimization problem is constructed in this approach. Then, the exactness property of the exact l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{1}$$\end{document} penalty function method is analyzed if it is used for solving the considered nonsmooth convex fuzzy optimization problem.
引用
收藏
页码:11627 / 11643
页数:16
相关论文
共 50 条