Comparative study of different machine learning models for automatic diabetic retinopathy detection using fundus image

被引:0
|
作者
Shubhi Gupta
Sanjeev Thakur
Ashutosh Gupta
机构
[1] Amity University,Department of Computer Science
[2] Amity University,undefined
[3] U.P. Rajarshi Tandon Open University,undefined
来源
关键词
Diabetic retinopathy detection; Machine learning (ML); Haralick features; Wavelet transforms;
D O I
暂无
中图分类号
学科分类号
摘要
Diabetics suffer from an eye condition called diabetic retinopathy (DR), which can lead to vision loss. The main region affected is the blood vessels in the retina. A large proportion of the world's population is suffering from the harmful effects of diabetes, and most of them are not recognized early. Severe vision loss can be reduced through early detection, diagnosis, and treatment efficiency. The manual errors and tedious work of ophthalmologists can be reduced by using computer-assisted automatic diagnosis of DR. This paper provides a comparative study and analysis of different segmentation, feature extraction and classification methods used for the automatic detection of DR. The fundus images from the Kaggle data set will be used to evaluate these techniques. The best results were obtained when Watershed Transform (WT) and Triplet Half Band Filter Bank (THFB) based segmentation and Haralick, and ADTCWT (Anisotropic Dual Tree Complex Wavelet Transform) based feature extraction together with machine learning based SVM (Support Vector Machine) classifier. The performance of the classifiers was evaluated in terms of accuracy, precision, F-Score, TPR (True Positive Rate), TNR (True Negative Rate), Kappa, FPR (False Positive Rate), FNR (False Negative rate), pixel accuracy, Jaccard similarity, cube coefficient, VOE (volumetric overlap error) and SVD (symmetric volume difference). The SVM model obtained a training accuracy of (98.42%).
引用
收藏
页码:34291 / 34322
页数:31
相关论文
共 50 条
  • [31] Diabetic Retinopathy Detection Using Machine Learning and Texture Features
    Chetoui, Mohamed
    Akhloufi, Moulay A.
    Kardouchi, Mustapha
    2018 IEEE CANADIAN CONFERENCE ON ELECTRICAL & COMPUTER ENGINEERING (CCECE), 2018,
  • [32] A Comprehensive Study of Machine Learning Techniques for Diabetic Retinopathy Detection
    Kumari, Rachna
    Kumar, Sanjeev
    Godara, Sunila
    INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, ICICC 2022, VOL 3, 2023, 492 : 161 - 183
  • [33] Automatic detection of microaneurysms in colour fundus images for diabetic retinopathy screening
    Rahim, Sarni Suhaila
    Jayne, Chrisina
    Palade, Vasile
    Shuttleworth, James
    NEURAL COMPUTING & APPLICATIONS, 2016, 27 (05): : 1149 - 1164
  • [34] Diabetic Retinopathy Fundus Image Classification and Lesions Localization System Using Deep Learning
    Alyoubi, Wejdan L.
    Abulkhair, Maysoon F.
    Shalash, Wafaa M.
    SENSORS, 2021, 21 (11)
  • [35] Automatic detection of microaneurysms in colour fundus images for diabetic retinopathy screening
    Sarni Suhaila Rahim
    Chrisina Jayne
    Vasile Palade
    James Shuttleworth
    Neural Computing and Applications, 2016, 27 : 1149 - 1164
  • [36] Detection of Diabetic Retinopathy and Maculopathy in Eye Fundus Images Using Fuzzy Image Processing
    Rahim, Sarni Suhaila
    Palade, Vasile
    Jayne, Chrisina
    Holzinger, Andreas
    Shuttleworth, James
    BRAIN INFORMATICS AND HEALTH (BIH 2015), 2015, 9250 : 379 - 388
  • [37] Image-Based Classification of Diabetic Retinopathy using Machine Learning
    Perez Conde, Pilar
    de la Calleja, Jorge
    Benitez, Antonio
    Auxilio Medina, Ma
    2012 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA), 2012, : 826 - 830
  • [38] Automatic Rigid Registration and Analysis of Colour Fundus Image in Patients with Diabetic Retinopathy
    Kolar, R.
    Harabis, V.
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 11: BIOMEDICAL ENGINEERING FOR AUDIOLOGY, OPHTHALMOLOGY, EMERGENCY AND DENTAL MEDICINE, 2009, 25 (11): : 251 - 254
  • [39] Comparative analysis of detection and classification of diabetic retinopathy by using transfer learning of CNN based models
    Yadav, Yadavendra
    Chand, Satish
    Sahoo, Ramesh Ch
    Sahoo, Biswa Mohan
    Kumar, Somesh
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (01) : 985 - 999
  • [40] ROC Analysis of Classifiers in Automatic Detection of Diabetic Retinopathy using Shape Features of Fundus Images
    Ramani, R. Geetha
    Balasubramanian, Lakshmi
    Jacob, Shomona Gracia
    2013 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2013, : 66 - 72