Heisenberg Uncertainty Relations as Statistical Invariants

被引:0
|
作者
Aniello Fedullo
机构
[1] University of Salerno,Department of Physics “E. R. Caianiello”
来源
Foundations of Physics | 2018年 / 48卷
关键词
Heisenberg uncertainty relations; Statistical invariants; Quantum models;
D O I
暂无
中图分类号
学科分类号
摘要
For a simple set of observables we can express, in terms of transition probabilities alone, the Heisenberg uncertainty relations, so that they are proven to be not only necessary, but sufficient too, in order for the given observables to admit a quantum model. Furthermore distinguished characterizations of strictly complex and real quantum models, with some ancillary results, are presented and discussed.
引用
收藏
页码:1546 / 1556
页数:10
相关论文
共 50 条
  • [31] Modification of Heisenberg uncertainty relations in noncommutative Snyder space-time geometry
    Battisti, Marco Valerio
    Meljanac, Stjepan
    PHYSICAL REVIEW D, 2009, 79 (06):
  • [32] Heisenberg's uncertainty relations for a hydrogen atom confined by an impenetrable spherical cavity
    Reyes-Garcia, R.
    Cruz, S. A.
    Cabrera-Trujillo, R.
    PHYSICAL REVIEW A, 2024, 110 (02)
  • [33] Three random variable transformations giving Heisenberg-type uncertainty relations
    D'Angiò, R
    STATISTICS & PROBABILITY LETTERS, 2006, 76 (04) : 423 - 430
  • [34] Non-hermitian extensions of Heisenberg type and Schrodinger type uncertainty relations
    Yanagi, Kenjiro
    Sekikawa, Kohei
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 9
  • [35] Coherent States of the p-Adic Heisenberg Group and Entropic Uncertainty Relations
    Zelenov, Evgeny
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2023, 15 (03) : 195 - 203
  • [36] Initial entanglement between detectors allows violating Heisenberg's uncertainty relations
    Di Lorenzo, Antonio
    7TH INTERNATIONAL WORKSHOP DICE2014 SPACETIME - MATTER - QUANTUM MECHANICS, 2015, 626
  • [37] p-adic quantum-classical analogue of the Heisenberg uncertainty relations
    Khrennikov, A
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 1997, 112 (04): : 555 - 560
  • [38] Experimental Test of Heisenberg's Measurement Uncertainty Relation Based on Statistical Distances
    Ma, Wenchao
    Ma, Zhihao
    Wang, Hengyan
    Chen, Zhihua
    Liu, Ying
    Kong, Fei
    Li, Zhaokai
    Peng, Xinhua
    Shi, Mingjun
    Shi, Fazhan
    Fei, Shao-Ming
    Du, Jiangfeng
    PHYSICAL REVIEW LETTERS, 2016, 116 (16)
  • [39] Position Uncertainty in the Heisenberg Uncertainty Relation
    Kosugi, Seiji
    PROGRESS OF THEORETICAL PHYSICS, 2010, 123 (03): : 431 - 448
  • [40] UNCERTAINTY ABOUT THE HEISENBERG UNCERTAINTY PRINCIPLE
    ZIMMERMAN, DW
    PERSONNEL AND GUIDANCE JOURNAL, 1981, 60 (03): : 136 - 137