An Engel condition with skew derivations for one-sided ideals

被引:0
|
作者
Cheng-Kai Liu
机构
[1] National Changhua University of Education,Department of Mathematics
来源
关键词
Prime ring; Automorphism; Skew derivation; Generalized polynomial identity (GPI); 16W20; 16W25; 16W55;
D O I
暂无
中图分类号
学科分类号
摘要
We apply the theory of generalized polynomial identities with automorphisms and skew derivations to prove the following theorem: Let A be a prime ring with the extended centroid C and with two-sided Martindale quotient ring Q, R a nonzero right ideal of A and δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} a nonzero σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-derivation of A, where σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} is an epimorphism of A. For x,y∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y\in A$$\end{document}, we set [x,y]=xy-yx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[x,y] = xy - yx$$\end{document}. If [[…[[δ(xn0),xn1],xn2],…],xnk]=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[[\ldots [[\delta (x^{n_0}),x^{n_1}],x^{n_{2}}],\ldots ],x^{n_k}]=0$$\end{document} for all x∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in R$$\end{document}, where n0,n1,…,nk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_{0},n_{1},\ldots ,n_{k}$$\end{document} are fixed positive integers, then one of the following conditions holds: (1) A is commutative; (2) C≅GF(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C\cong GF(2)$$\end{document}, the Galois field of two elements; (3) there exist b∈Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in Q$$\end{document} and λ∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in C$$\end{document} such that δ(x)=σ(x)b-bx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta (x)=\sigma (x)b-bx$$\end{document} for all x∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in A$$\end{document}, (b-λ)R=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(b-\lambda )R=0$$\end{document} and σ(R)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (R)=0$$\end{document}. The analogous result for left ideals is also obtained. Our theorems are natural generalizations of the well-known results for derivations obtained by Lanski (Proc Am Math Soc 125:339–345, 1997) and Lee (Can Math Bull 38:445–449, 1995).
引用
收藏
页码:833 / 852
页数:19
相关论文
共 50 条
  • [41] On one sided ideals of a semiprime ring with generalized derivations
    Asma Ali
    Vincenzo De Filippis
    Faiza Shujat
    Aequationes mathematicae, 2013, 85 : 529 - 537
  • [42] Skew derivations with annihilating Engel conditions
    Chuang, CL
    Chou, MC
    Liu, CK
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2006, 68 (1-2): : 161 - 170
  • [43] ONE-SIDED GENERALIZED(α, β)-REVERSE DERIVATIONS OFASSOCIATIVE RINGS
    Engin, Ayse
    Aydin, Neset
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2024, 39 (01): : 21 - 31
  • [44] On one sided ideals of a semiprime ring with generalized derivations
    Ali, Asma
    De Filippis, Vincenzo
    Shujat, Faiza
    AEQUATIONES MATHEMATICAE, 2013, 85 (03) : 529 - 537
  • [45] Simple rings with injectivity conditions on one-sided ideals
    Clark, John
    Van Huynh, Dinh
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 76 (02) : 315 - 320
  • [46] On one-sided ideals of rings of continuous linear operators
    Radjabalipour, Mehdi
    Yahaghi, Bamdad R.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (5-6) : 1184 - 1190
  • [47] A study of uniform one-sided ideals in simple rings
    Clark, John
    Van Huynh, Dinh
    GLASGOW MATHEMATICAL JOURNAL, 2007, 49 : 489 - 495
  • [48] Prime rings with finiteness properties on one-sided ideals
    Lee, TK
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2002, 45 : 507 - 511
  • [49] THE TOTAL GRAPH OF ANNIHILATING ONE-SIDED IDEALS OF A RING
    Alibemani, Abolfazl
    Hashemi, Ebrahim
    Alhevaz, Abdollah
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2020, 27 : 61 - 76
  • [50] On one-sided Lie nilpotent ideals of associative rings
    Luchko, Victoriya S.
    Petravchuk, Anatoliy P.
    ALGEBRA & DISCRETE MATHEMATICS, 2007, (04): : 102 - 107