Crustal and time-varying magnetic fields at the InSight landing site on Mars

被引:0
|
作者
Catherine L. Johnson
Anna Mittelholz
Benoit Langlais
Christopher T. Russell
Véronique Ansan
Don Banfield
Peter J. Chi
Matthew O. Fillingim
Francois Forget
Heidi Fuqua Haviland
Matthew Golombek
Steve Joy
Philippe Lognonné
Xinping Liu
Chloé Michaut
Lu Pan
Cathy Quantin-Nataf
Aymeric Spiga
Sabine Stanley
Shea N. Thorne
Mark A. Wieczorek
Yanan Yu
Suzanne E. Smrekar
William B. Banerdt
机构
[1] University of British Columbia,Department of Earth, Ocean and Atmospheric Sciences
[2] Planetary Science Institute,Laboratoire de Planétologie et Géodynamique
[3] UMR-CNRS 6112,Earth, Planetary and Space Sciences
[4] Université de Nantes,Space Sciences Laboratory
[5] Université d’Angers,Laboratoire de Météorologie Dynamique / Institut Pierre
[6] CNRS,Simon Laplace (LMD/IPSL)
[7] University of California,Jet Propulsion Laboratory
[8] Cornell Center for Astrophysics and Planetary Science,Department of Earth and Planetary Sciences
[9] University of California,Applied Physics Lab
[10] Sorbonne Université,undefined
[11] Centre National de la Recherche Scientifique (CNRS),undefined
[12] École Polytechnique,undefined
[13] École Normale Supérieure (ENS),undefined
[14] Campus Pierre et Marie Curie BC99,undefined
[15] Marshall Space Flight Center,undefined
[16] California Institute of Technology,undefined
[17] Université Paris Diderot-Sorbonne Paris Cité,undefined
[18] Institut de Physique du Globe de Paris,undefined
[19] Université de Lyon,undefined
[20] École Normale Supérieure de Lyon,undefined
[21] UCBL,undefined
[22] CNRS,undefined
[23] Laboratoire de Géologie de Lyon -Terre,undefined
[24] Planètes,undefined
[25] Environnement,undefined
[26] Université de Lyon,undefined
[27] Université Claude Bernard Lyon 1,undefined
[28] ENS de Lyon,undefined
[29] CNRS,undefined
[30] UMR 5276 Laboratoire de Géologie de Lyon -Terre,undefined
[31] Planètes,undefined
[32] Environnement,undefined
[33] Institut Universitaire de France (IUF),undefined
[34] Johns Hopkins University,undefined
[35] Johns Hopkins University,undefined
[36] Université Côte d’Azur,undefined
[37] Observatoire de la Côte d’Azur,undefined
[38] CNRS,undefined
[39] Laboratoire Lagrange,undefined
来源
Nature Geoscience | 2020年 / 13卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Magnetic fields provide a window into a planet’s interior structure and evolution, including its atmospheric and space environments. Satellites at Mars have measured crustal magnetic fields indicating an ancient dynamo. These crustal fields interact with the solar wind to generate transient fields and electric currents in Mars’s upper atmosphere. Surface magnetic field data play a key role in understanding these effects and the dynamo. Here we report measurements of magnetic field strength and direction at the InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) landing site on Mars. We find that the field is ten times stronger than predicted by satellite-based models. We infer magnetized rocks beneath the surface, within ~150 km of the landing site, consistent with a past dynamo with Earth-like strength. Geological mapping and InSight seismic data suggest that much or all of the magnetization sources are carried in basement rocks, which are at least 3.9 billion years old and are overlain by between 200 m and ~10 km of lava flows and modified ancient terrain. Daily variations in the magnetic field indicate contributions from ionospheric currents at 120 km to 180 km altitude. Higher-frequency variations are also observed; their origin is unknown, but they probably propagate from even higher altitudes to the surface. We propose that the time-varying fields can be used to investigate the electrical conductivity structure of the martian interior.
引用
收藏
页码:199 / 204
页数:5
相关论文
共 50 条
  • [41] Ferrohydrodynamic pumping in spatially uniform sinusoidally time-varying magnetic fields
    Massachusetts Inst of Technology
    J Magn Magn Mater, 1-2 (165-173):
  • [42] Cell transmembrane potential in contactless permeabilization by time-varying magnetic fields
    Chiaramello, E.
    Fiocchi, S.
    Bonato, M.
    Gallucci, S.
    Benini, M.
    Parazzini, M.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 135
  • [43] Particle acceleration by a time-varying electric field in merging magnetic fields
    Litvinenko, YE
    SOLAR VARIABILITY: FROM CORE TO OUTER FRONTIERS, VOLS 1 & 2, 2002, 506 : 327 - 330
  • [44] Simulating the effects of time-varying magnetic fields with a realistic simulated scanner
    Drobnjak, Ivana
    Pell, Gaby S.
    Jenkinson, Mark
    MAGNETIC RESONANCE IMAGING, 2010, 28 (07) : 1014 - 1021
  • [45] THE EFFECTS OF TIME-VARYING MAGNETIC-FIELDS ON BIOLOGICAL-MATERIALS
    BARNES, FS
    IEEE TRANSACTIONS ON MAGNETICS, 1990, 26 (05) : 2092 - 2097
  • [46] A solution of the inhomogeneous Bloch equation for a class of time-varying magnetic fields
    Kobayashi, M
    PROGRESS OF THEORETICAL PHYSICS, 2004, 112 (05): : 773 - 783
  • [47] DYNAMIC BEHAVIORS OF CONDUCTIVE CIRCULAR PLATE IN TIME-VARYING MAGNETIC FIELDS
    Yuanwen Gao1 Bang Xu(Key Laboratory of Mechanics on Western Disaster and Environment
    Acta Mechanica Solida Sinica, 2010, 23 (01) : 66 - 76
  • [48] Observation of the Intrinsic Abraham Force in Time-Varying Magnetic and Electric Fields
    Rikken, G. L. J. A.
    van Tiggelen, B. A.
    PHYSICAL REVIEW LETTERS, 2012, 108 (23)
  • [49] PRINCIPLES OF NERVE AND HEART EXCITATION BY TIME-VARYING MAGNETIC-FIELDS
    REILLY, JP
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES-SERIES, 1992, 649 : 96 - 117
  • [50] Calculations of Cell Transmembrane Voltage Induced by Time-Varying Magnetic Fields
    Hu, Qin
    Joshi, Ravi P.
    Miklavcic, Damijan
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2020, 48 (04) : 1088 - 1095