Using predictive machine learning models for drug response simulation by calibrating patient-specific pathway signatures

被引:0
|
作者
Sepehr Golriz Khatami
Sarah Mubeen
Vinay Srinivas Bharadhwaj
Alpha Tom Kodamullil
Martin Hofmann-Apitius
Daniel Domingo-Fernández
机构
[1] Fraunhofer Institute for Algorithms and Scientific Computing,Department of Bioinformatics
[2] Bonn-Aachen International Center for Information Technology (B-IT),undefined
[3] University of Bonn,undefined
[4] Fraunhofer Center for Machine Learning,undefined
[5] Enveda Biosciences,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The utility of pathway signatures lies in their capability to determine whether a specific pathway or biological process is dysregulated in a given patient. These signatures have been widely used in machine learning (ML) methods for a variety of applications including precision medicine, drug repurposing, and drug discovery. In this work, we leverage highly predictive ML models for drug response simulation in individual patients by calibrating the pathway activity scores of disease samples. Using these ML models and an intuitive scoring algorithm to modify the signatures of patients, we evaluate whether a given sample that was formerly classified as diseased, could be predicted as normal following drug treatment simulation. We then use this technique as a proxy for the identification of potential drug candidates. Furthermore, we demonstrate the ability of our methodology to successfully identify approved and clinically investigated drugs for four different cancers, outperforming six comparable state-of-the-art methods. We also show how this approach can deconvolute a drugs’ mechanism of action and propose combination therapies. Taken together, our methodology could be promising to support clinical decision-making in personalized medicine by simulating a drugs’ effect on a given patient.
引用
收藏
相关论文
共 50 条
  • [31] Evaluation of Machine Learning-based Patient Outcome Prediction Using Patient-specific Difficulty and Discrimination Indices
    Abad, Zahra Shakeri Hossein
    Kline, Adrienne
    Lee, Joon
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 5446 - 5449
  • [32] Machine learning model for patient-specific QA prediction in stereotactic radiosurgery
    Buzzi, Simone A.
    Bianchi, Monica
    Zaccone, Caterina
    Bresolin, Andrea
    Dei, Damiano
    Gallo, Pasqualina
    La Fauci, Francesco
    Lenardi, Cristina
    Lobefalo, Francesca
    Paganini, Lucia
    Parabicoli, Sara
    Pelizzoli, Marco
    Reggiori, Giacomo
    Tomatis, Stefano
    Scorsetti, Marta
    Mancosu, Pietro
    Lambri, Nicola
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S4557 - S4559
  • [33] Disease-associated and patient-specific immune cell signatures in juvenile-onset systemic lupus erythematosus: patient stratification using a machine-learning approach
    Robinson, George A.
    Peng, Junjie
    Donnes, Pierre
    Coelewij, Leda
    Naja, Meena
    Radziszewska, Anna
    Wincup, Chris
    Peckham, Hannah
    Isenberg, David A.
    Ioannou, Yiannis
    Pineda-Torra, Ines
    Ciurtin, Coziana
    Jury, Elizabeth C.
    LANCET RHEUMATOLOGY, 2020, 2 (08): : E485 - E496
  • [34] Simulation of TTFields distribution within patient-specific computational head models
    Kinzel, A.
    Urman, N.
    Levi, S.
    Naveh, A.
    Manzur, D.
    Hershkovich, H. S.
    Kirson, E. D.
    Bomzon, Z.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2019, 195 : S188 - S188
  • [35] Creating and parameterizing patient-specific deep brain stimulation pathway-activation models using the hyperdirect pathway as an example
    Gunalan, Kabilar
    Chaturvedi, Ashutosh
    Howell, Bryan
    Duchin, Yuval
    Lempka, Scott F.
    Patriat, Remi
    Sapiro, Guillermo
    Harel, Noam
    McIntyre, Cameron C.
    PLOS ONE, 2017, 12 (04):
  • [36] Response to Comment on "Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells"
    Egawa, Naohiro
    Kitaoka, Shiho
    Tsukita, Kayoko
    Naitoh, Motoko
    Takahashi, Kazutoshi
    Yamamoto, Takuya
    Adachi, Fumihiko
    Kondo, Takayuki
    Okita, Keisuke
    Asaka, Isao
    Aoi, Takashi
    Watanabe, Akira
    Yamada, Yasuhiro
    Morizane, Asuka
    Takahashi, Jun
    Ayaki, Takashi
    Ito, Hidefumi
    Yoshikawa, Katsuhiro
    Yamawaki, Satoko
    Suzuki, Shigehiko
    Watanabe, Dai
    Hioki, Hiroyuki
    Kaneko, Takeshi
    Makioka, Kouki
    Okamoto, Koichi
    Takuma, Hiroshi
    Tamaoka, Akira
    Hasegawa, Kazuko
    Nonaka, Takashi
    Hasegawa, Masato
    Kawata, Akihiro
    Yoshida, Minoru
    Nakahata, Tatsutoshi
    Takahashi, Ryosuke
    Marchetto, Maria C. N.
    Gage, Fred H.
    Yamanaka, Shinya
    Inoue, Haruhisa
    SCIENCE TRANSLATIONAL MEDICINE, 2013, 5 (188)
  • [37] Using machine learning to identify local cellular properties that surpport re-entrant activation in patient-specific models of atrial fibrillation
    Corrado, Cesare
    Williams, Steven
    Roney, Caroline
    Plank, Gernot
    O'Neill, Mark
    Niederer, Steven
    EUROPACE, 2021, 23 : I12 - I20
  • [38] Breast Cancer Organoids Model Patient-Specific Response to Drug Treatment
    Campaner, Elena
    Zannini, Alessandro
    Santorsola, Mariangela
    Bonazza, Deborah
    Bottin, Cristina
    Cancila, Valeria
    Tripodo, Claudio
    Bortul, Marina
    Zanconati, Fabrizio
    Schoeftner, Stefan
    Del Sal, Giannino
    CANCERS, 2020, 12 (12) : 1 - 19
  • [39] Tracing and Forecasting Metabolic Indices of Cancer Patients Using Patient-Specific Deep Learning Models
    Hou, Jianguo
    Deng, Jun
    Li, Chunyan
    Wang, Qi
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (05):
  • [40] REHEARSAL Using Patient-Specific Simulation to Improve Endovascular Efficiency
    Wooster, Mathew
    Doyle, Adam
    Hislop, Sean
    Glocker, Roan
    Armstrong, Paul
    Singh, Michael
    Illig, Karl A.
    VASCULAR AND ENDOVASCULAR SURGERY, 2018, 52 (03) : 169 - 172