Using predictive machine learning models for drug response simulation by calibrating patient-specific pathway signatures

被引:0
|
作者
Sepehr Golriz Khatami
Sarah Mubeen
Vinay Srinivas Bharadhwaj
Alpha Tom Kodamullil
Martin Hofmann-Apitius
Daniel Domingo-Fernández
机构
[1] Fraunhofer Institute for Algorithms and Scientific Computing,Department of Bioinformatics
[2] Bonn-Aachen International Center for Information Technology (B-IT),undefined
[3] University of Bonn,undefined
[4] Fraunhofer Center for Machine Learning,undefined
[5] Enveda Biosciences,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The utility of pathway signatures lies in their capability to determine whether a specific pathway or biological process is dysregulated in a given patient. These signatures have been widely used in machine learning (ML) methods for a variety of applications including precision medicine, drug repurposing, and drug discovery. In this work, we leverage highly predictive ML models for drug response simulation in individual patients by calibrating the pathway activity scores of disease samples. Using these ML models and an intuitive scoring algorithm to modify the signatures of patients, we evaluate whether a given sample that was formerly classified as diseased, could be predicted as normal following drug treatment simulation. We then use this technique as a proxy for the identification of potential drug candidates. Furthermore, we demonstrate the ability of our methodology to successfully identify approved and clinically investigated drugs for four different cancers, outperforming six comparable state-of-the-art methods. We also show how this approach can deconvolute a drugs’ mechanism of action and propose combination therapies. Taken together, our methodology could be promising to support clinical decision-making in personalized medicine by simulating a drugs’ effect on a given patient.
引用
收藏
相关论文
共 50 条
  • [1] Using predictive machine learning models for drug response simulation by calibrating patient-specific pathway signatures
    Khatami, Sepehr Golriz
    Mubeen, Sarah
    Bharadhwaj, Vinay Srinivas
    Kodamullil, Alpha Tom
    Hofmann-Apitius, Martin
    Domingo-Fernandez, Daniel
    NPJ SYSTEMS BIOLOGY AND APPLICATIONS, 2021, 7 (01)
  • [2] ACCURATE PATIENT-SPECIFIC MACHINE LEARNING MODELS OF GLIOBLASTOMA INVASION USING TRANSFER LEARNING
    Hu, Leland
    Yoon, Hyunsoo
    Eschbacher, Jennifer
    Baxter, Leslie
    Smith, Kris
    Nakaji, Peter
    Mcgee, Samuel
    Dueck, Amylou
    Quarles, Christopher
    Karis, John
    Hawkins-Daarud, Andrea
    Jackson, Pamela
    Massey, Susan
    Wu, Teresa
    Swanson, Kristin
    Li, Jing
    NEURO-ONCOLOGY, 2017, 19 : 157 - 158
  • [3] Accurate Patient-Specific Machine Learning Models of Glioblastoma Invasion Using Transfer Learning
    Hu, L. S.
    Yoon, H.
    Eschbacher, J. M.
    Baxter, L. C.
    Dueck, A. C.
    Nespodzany, A.
    Smith, K. A.
    Nakaji, P.
    Xu, Y.
    Wang, L.
    Karis, J. P.
    Hawkins-Daarud, A. J.
    Singleton, K. W.
    Jackson, P. R.
    Anderies, B. J.
    Bendok, B. R.
    Zimmerman, R. S.
    Quarles, C.
    Porter-Umphrey, A. B.
    Mrugala, M. M.
    Sharma, A.
    Hoxworth, J. M.
    Sattur, M. G.
    Sanai, N.
    Koulemberis, P. E.
    Krishna, C.
    Mitchell, J. R.
    Wu, T.
    Tran, N. L.
    Swanson, K. R.
    Li, J.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2019, 40 (03) : 418 - 425
  • [4] Learning patient-specific predictive models from clinical data
    Visweswaran, Shyam
    Angus, Derek C.
    Hsieh, Margaret
    Weissfeld, Lisa
    Yealy, Donald
    Cooper, Gregory F.
    JOURNAL OF BIOMEDICAL INFORMATICS, 2010, 43 (05) : 669 - 685
  • [5] Assessing the predictive capacity of machine learning models using patient-specific variables in determining in-hospital outcomes after THA
    Nham, Fong H.
    Court, Tannor
    Zalikha, Abdul K.
    El-Othmani, Mouhanad M.
    Shah, Roshan P.
    JOURNAL OF ORTHOPAEDICS, 2023, 41 : 39 - 46
  • [6] Machine learning-guided evaluation of extraction and simulation methods for cancer patient-specific metabolic models
    Lee, Sang Mi
    Lee, GaRyoung
    Kim, Hyun Uk
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 3041 - 3052
  • [7] Surgery simulation using patient-specific models for laparoscopic colectomy
    Suzuki, Shigeyuki
    Eto, Ken
    Hattori, Asaki
    Yanaga, Katsuhiko
    Suzuki, Naoki
    MEDICINE MEETS VIRTUAL REALITY 15: IN VIVO, IN VITRO, IN SILICO: DESIGNING THE NEXT IN MEDICINE, 2007, 125 : 464 - +
  • [8] Patient-specific Dose Escalation Using Patient-Matching Machine Learning
    Bush, K.
    Holcombe, C.
    Kapp, D.
    Buyyounouski, M.
    Hancock, S.
    Xing, L.
    Atwood, T.
    King, M.
    MEDICAL PHYSICS, 2014, 41 (08) : 22 - 22
  • [9] Machine-learning-based patient-specific prediction models for knee osteoarthritis
    Jamshidi, Afshin
    Pelletier, Jean-Pierre
    Martel-Pelletier, Johanne
    NATURE REVIEWS RHEUMATOLOGY, 2019, 15 (01) : 49 - 60
  • [10] Machine-learning-based patient-specific prediction models for knee osteoarthritis
    Afshin Jamshidi
    Jean-Pierre Pelletier
    Johanne Martel-Pelletier
    Nature Reviews Rheumatology, 2019, 15 : 49 - 60