On the Determinant Problem for the Relativistic Boltzmann Equation

被引:0
|
作者
James Chapman
Jin Woo Jang
Robert M. Strain
机构
[1] University of Pennsylvania,Department of Mathematics
[2] University of Bonn,Institute for Applied Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This article considers a long-outstanding open question regarding the Jacobian determinant for the relativistic Boltzmann equation in the center-of-momentum coordinates. For the Newtonian Boltzmann equation, the center-of-momentum coordinates have played a large role in the study of the Newtonian non-cutoff Boltzmann equation, in particular we mention the widely used cancellation lemma [1]. In this article we calculate specifically the very complicated Jacobian determinant, in ten variables, for the relativistic collision map from the momentum p to the post collisional momentum p′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p'$$\end{document}; specifically we calculate the determinant for p↦u=θp′+1-θp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\mapsto u = \theta p'+\left( 1-\theta \right) p$$\end{document} for θ∈[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta \in [0,1]$$\end{document}. Afterwards we give an upper-bound for this determinant that has no singularity in both p and q variables. Next we give an example where we prove that the Jacobian goes to zero in a specific pointwise limit. We further explain the results of our numerical study which shows that the Jacobian determinant has a very large number of distinct points at which it is machine zero. This generalizes the work of Glassey-Strauss (1991) [8] and Guo-Strain (2012) [12]. These conclusions make it difficult to envision a direct relativistic analog of the Newtonian cancellation lemma in the center-of-momentum coordinates.
引用
收藏
页码:1913 / 1943
页数:30
相关论文
共 50 条