Decomposition method for solving nonlinear integro-differential equations

被引:17
|
作者
Al-Khaled K. [1 ]
Allan F. [1 ]
机构
[1] Department of Mathematics, Faculty of Science, United Arab Emirates University, Al-Ain
关键词
Decomposition method; Integral equations (numerical methods); Integro-differential equations; Nonlinear Volterra-Fredholm equations;
D O I
10.1007/BF02935815
中图分类号
学科分类号
摘要
This paper outlines a reliable strategy for solving nonlinear Volterra-Fredholm integro-differential equations. The modified form of Adomian decomposition method is found to be fast and accurate. Numerical examples are presented to illustrate the accuracy of the method. © 2005 Korean Society for Computational & Applied Mathematics and Korean SIGCAM.
引用
收藏
页码:415 / 425
页数:10
相关论文
共 50 条
  • [31] Efficient method for solving nonlinear weakly singular kernel fractional integro-differential equations
    Ameen, Ismail Gad
    Baleanu, Dumitru
    Hussien, Hussien Shafei
    AIMS MATHEMATICS, 2024, 9 (06): : 15819 - 15836
  • [33] A New Operational Method for Solving Nonlinear Volterra Integro-differential Equations with Fractional Order
    Moghadam, M. Mohseni
    Saeedi, H.
    Mollahasani, N.
    JOURNAL OF INFORMATICS AND MATHEMATICAL SCIENCES, 2010, 2 (2-3): : 95 - 107
  • [34] Wavelets method for solving systems of nonlinear singular fractional Volterra integro-differential equations
    Heydari, M. H.
    Hooshmandasl, M. R.
    Mohammadi, F.
    Cattani, C.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (01) : 37 - 48
  • [35] Haar wavelet method for nonlinear integro-differential equations
    Lepik, Ü
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 176 (01) : 324 - 333
  • [36] HDG Method for Nonlinear Parabolic Integro-Differential Equations
    Jain, Riya
    Yadav, Sangita
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2025, 25 (01) : 115 - 131
  • [37] A CAS wavelet method for solving nonlinear Fredholm integro-differential equations of fractional order
    Saeedi, H.
    Moghadam, M. Mohseni
    Mollahasani, N.
    Chuev, G. N.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (03) : 1154 - 1163
  • [38] METHOD OF NONLINEAR VARIATION OF PARAMETERS FOR INTEGRO-DIFFERENTIAL EQUATIONS
    BERNFELD, SR
    LORD, ME
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A145 - A146
  • [39] Shifted Jacobi spectral collocation method with convergence analysis for solving integro-differential equations and system of integro-differential equations
    Doha, Eid H.
    Abdelkawy, Mohamed A.
    Amin, Ahmed Z. M.
    Baleanu, Dumitru
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2019, 24 (03): : 332 - 352
  • [40] Solving Integro-Differential Equations by a Semi-Analytic Method
    Fardi, M.
    Ghasemi, M.
    Boroujeni, F. Hemati
    JOURNAL OF MATHEMATICAL EXTENSION, 2012, 6 (02) : 75 - 90