Zeros of Holomorphic Functions in the Unit Ball and Subspherical Functions

被引:0
|
作者
B. N. Khabibullin
F. B. Khabibullin
机构
[1] Bashkir State University,
来源
关键词
holomorphic function; zero set; Hausdorff measure; subharmonic function; Riesz measure; uniqueness theorem; subspherical function;
D O I
暂无
中图分类号
学科分类号
摘要
We continue our previous results from the functions of one complex variable in the unit disk to the functions of several variables in the unit ball. Let M be a δ-subharmonic function with Riesz charge µM on the unit ball B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{B}$$\end{document} in ℂn. Let f be a nonzero holomorphic function on B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{B}$$\end{document} such that f vanishes on Z ⊂ B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{B}$$\end{document}, and satisfies the inequality ∣f∣ ≤ exp M on B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{B}$$\end{document}. Then restrictions on the growth of µM near the boundary of B imply certain restrictions on the distribution of Z. We give a quantitative study of this phenomenon in terms of (2n − 2)-Hausdorff measure of zero subset Z, and special non-radial test subharmonic functions constructed using ρ-subspherical functions.
引用
收藏
页码:648 / 659
页数:11
相关论文
共 50 条