Zeros of holomorphic functions in the unit disk and ρ-trigonometrically convex functions

被引:0
|
作者
Khabibullin, Bulat N. [1 ]
Khabibullin, Farkhat B. [1 ]
机构
[1] Bashkir State Univ, Dept Math & IT, Ufa, Russia
基金
俄罗斯科学基金会;
关键词
Holomorphic function; Zero set; Subharmonic function; Riesz measure; Uniqueness theorem; rho-Trigonometrically convex function; SETS;
D O I
10.1007/s13324-019-00282-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a subharmonic function with Riesz measure mu(M) on the unit disk D in the complex plane C. Let f be a nonzero holomorphic function on D such that f vanishes on Z subset of D, and satisfies vertical bar f vertical bar = exp M on D. Then restrictions on the growth of mu(M) near the boundary of D imply certain restrictions on the distribution of Z. We give a quantitative study of this phenomenon in terms of special non-radial test functions constructed using rho-trigonometrically convex functions.
引用
收藏
页码:1087 / 1098
页数:12
相关论文
共 50 条