Analytical study of D-dimensional fractional Klein–Gordon equation with a fractional vector plus a scalar potential

被引:0
|
作者
Tapas Das
Uttam Ghosh
Susmita Sarkar
Shantanu Das
机构
[1] Kodalia Prasanna Banga High School (H.S),Department of Applied Mathematics
[2] University of Calcutta,undefined
[3] Reactor Control System Design Section (E & I Group),undefined
[4] Bhabha Atomic Research Centre,undefined
来源
Pramana | 2020年 / 94卷
关键词
Fractional Klein–Gordon equation; power series method; fractional Coulomb potential; Mittag–Leffler function; 02.30.–f; 03.65.Db; 03.65.Ge; 02.30.Rz;
D O I
暂无
中图分类号
学科分类号
摘要
D-dimensional fractional Klein–Gordon equation with fractional vector and scalar potential has been studied. Both fractional potentials are taken as attractive Coulomb-type with different multiplicative parameters, namely v and s. Jumarie-type definitions for fractional calculus have been used. We have succeeded in achieving Whittaker-type classical differential equation in fractional mode for the required eigenfunction. Fractional Whittaker equation has been manipulated using the behaviour of the eigenfunction at asymptotic distance and origin. This manipulation delivers fractional-type confluent hypergeometric equation to solve. Power series method has been employed to do the task. All the obtained results agree with the existing results in literature when fractional parameter α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is unity. Finally, we furnish numerical results with a few eigenfunction graphs for different spatial dimensions and fractional parameters.
引用
收藏
相关论文
共 50 条
  • [31] Liouvillian solutions of the Klein-Gordon equation on D-dimensional de Sitter spacetime
    Holder, C. L.
    JOURNAL OF MATHEMATICAL PHYSICS, 2025, 66 (02)
  • [32] The Klein-Gordon equation with equal scalar and vector Bargmann potentials in D dimensions
    Dhahbi, A.
    Landolsi, A. A.
    RESULTS IN PHYSICS, 2022, 33
  • [33] An energy-preserving computational approach for the semilinear space fractional damped Klein-Gordon equation with a generalized scalar potential
    Hendy, Ahmed S.
    Taha, T. R.
    Suragan, D.
    Zaky, Mahmoud A.
    APPLIED MATHEMATICAL MODELLING, 2022, 108 : 512 - 530
  • [34] Fractional integration and fractional differentiation for d-dimensional Jacobi expansions
    Balderrama, Cristina
    Urbina R., Wilfredo O.
    SPECIAL FUNCTIONS AND ORTHOGONAL POLYNOMIALS, 2008, 471 : 1 - 14
  • [35] Analytical approximate solution for nonlinear space-time fractional Klein-Gordon equation
    Gepreel, Khaled A.
    Mohamed, Mohamed S.
    CHINESE PHYSICS B, 2013, 22 (01)
  • [36] On the standing wave in coupled fractional Klein-Gordon equation
    Guo, Zhenyu
    Zhang, Xin
    GEORGIAN MATHEMATICAL JOURNAL, 2024, 31 (03) : 405 - 421
  • [37] A reliable numerical algorithm for the fractional klein-gordon equation
    Singh J.
    Singh H.
    Kumar D.
    Singh C.S.
    Engineering Transactions, 2019, 67 (01): : 21 - 34
  • [38] Analytical solution for the dynamics and optimization of fractional Klein-Gordon equation: an application to quantum particle
    Abro, Kashif Ali
    Siyal, Ambreen
    Atangana, Abdon
    Al-Mdallal, Qasem M.
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (08)
  • [39] Analytical and numerical validation for solving the fractional Klein-Gordon equation using the fractional complex transform and variational iteration methods
    Khader M.M.
    Adel M.
    Nonlinear Engineering, 2016, 5 (03) : 141 - 145
  • [40] AN EXACT SOLUTION OF THE SPHERICAL WAVE EQUATION IN D-DIMENSIONAL FRACTIONAL SPACE
    Zubair, M.
    Mughal, M. J.
    Naqvi, Q. A.
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2011, 25 (10) : 1481 - 1491