A Computational Approach to Exponential-Type Variable-Order Fractional Differential Equations

被引:0
|
作者
Roberto Garrappa
Andrea Giusti
机构
[1] University of Bari,Department of Mathematics
[2] ETH Zurich,Institute for Theoretical Physics
来源
关键词
Fractional differential equations; Variable order; Laplace transform; Numerical computation; Convolution quadrature rules; 34A08; 65L06; 44A10;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the properties of some recently developed variable-order differential operators involving order transition functions of exponential type. Since the characterization of such operators is performed in the Laplace domain, it is necessary to resort to accurate numerical methods to derive the corresponding behaviours in the time domain. In this regard, we develop a computational procedure to solve variable-order fractional differential equations of this novel class. Furthermore, we provide some numerical experiments to show the effectiveness of the proposed technique.
引用
收藏
相关论文
共 50 条
  • [31] A FAST AND PRECISE NUMERICAL ALGORITHM FOR A CLASS OF VARIABLE-ORDER FRACTIONAL DIFFERENTIAL EQUATIONS
    Bhrawyi, Ali H.
    Zaky, Mahmoud A.
    Abdel-Aty, Mahmoud
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2017, 18 (01): : 17 - 24
  • [32] On spectral methods for solving variable-order fractional integro-differential equations
    Doha, E. H.
    Abdelkawy, M. A.
    Amin, A. Z. M.
    Lopes, Antonio M.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (03): : 3937 - 3950
  • [33] An efficient numerical approach to solve a class of variable-order fractional integro-partial differential equations
    Babaei, Afshin
    Banihashemi, Seddigheh
    Cattani, Carlo
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (01) : 674 - 689
  • [34] The Existence and Uniqueness of Solutions for Variable-Order Fractional Differential Equations with Antiperiodic Fractional Boundary Conditions
    Wang, Fang
    Liu, Lei
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [35] A computational method for a class of systems of nonlinear variable-order fractional quadratic integral equations
    Heydari, M. H.
    APPLIED NUMERICAL MATHEMATICS, 2020, 153 : 164 - 178
  • [36] A Numerical Approach for the System of Nonlinear Variable-order Fractional Volterra Integral Equations
    Yifei Wang
    Jin Huang
    Hu Li
    Numerical Algorithms, 2024, 95 : 1855 - 1877
  • [37] Exponential-sum-approximation technique for variable-order time-fractional diffusion equations
    Jia-Li Zhang
    Zhi-Wei Fang
    Hai-Wei Sun
    Journal of Applied Mathematics and Computing, 2022, 68 : 323 - 347
  • [38] Stability of Caputo-Type Fractional Variable-Order Biquadratic Difference Equations
    Brandibur, Oana
    Kaslik, Eva
    Mozyrska, Dorota
    Wyrwas, Malgorzata
    NEW TRENDS IN NONLINEAR DYNAMICS, VOL III: PROCEEDINGS OF THE FIRST INTERNATIONAL NONLINEAR DYNAMICS CONFERENCE (NODYCON 2019), 2020, : 295 - 303
  • [39] A Numerical Approach for the System of Nonlinear Variable-order Fractional Volterra Integral Equations
    Wang, Yifei
    Huang, Jin
    Li, Hu
    NUMERICAL ALGORITHMS, 2024, 95 (04) : 1855 - 1877
  • [40] A numerical approach for solving a class of variable-order fractional functional integral equations
    Keshi, Farzad Khane
    Moghaddam, Behrouz Parsa
    Aghili, Arman
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04): : 4821 - 4834