Anchoring palladium nanoparticles on CsPbBr3 perovskite nanocrystals for enhanced photocatalytic CO2 reduction通过锚定钯纳米颗粒在CsPbBr3钙钛矿纳米晶体上从而增强光催化CO2还原

被引:0
|
作者
Hongbin Xiao
Qingkai Qian
Zhigang Zang
机构
[1] Chongqing University,Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education)
[2] Chongqing University,School of Chemistry and Chemical Engineering
来源
Science China Materials | 2023年 / 66卷
关键词
CsPbX; nanocrystals; photocatalytic CO; reduction reaction; palladium nanoparticles; photo-assisted strategy; carrier separation;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, all-inorganic cesium lead halide (CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals (NCs) have been extensively investigated for photocatalytic carbon dioxide (CO2) reduction reaction (CO2RR). However, because the pristine CsPbX3 NCs suffer from severe radiative recombination, it is imperative to elaborately design heterostructures to separate electron-hole pairs for achieving efficient CO2RR. Herein, palladium (Pd) nanoparticles (NPs) are anchored on CsPbBr3 NCs by a photo-assisted approach for the first time. The as-prepared CsPbBr3@Pd NCs not only build Schottky junctions at the CsPbBr3/Pd interfaces that promote the carrier separation and suppress the radiative recombination, but also exhibit lower energy barriers for photocatalytic CO2RR than pristine CsPbBr3 NCs according to the density functional theory calculations. The electron consumption rate reaches a striking peak of 46.2 µmol g−1 h−1 by using CsPbBr3@Pd NCs as photocatalysts for CO2RR, which is 4.8-fold of the counterpart of pristine CsPbBr3 NCs. This work not only presents a photo-assisted strategy for anchoring Pd NPs on CsPbBr3 NCs, but also demonstrates the great potential of using CsPbBr3@Pd NCs for photocatalytic CO2RR. [graphic not available: see fulltext]
引用
收藏
页码:1810 / 1819
页数:9
相关论文
共 49 条
  • [41] Enhanced photocatalytic CO2 reduction via MXene synergism: constructing an efficient heterojunction structure of g-C3N4 /Nb2C /CsPbBr3
    Zhang, Shiding
    Wang, Yuhua
    Mersal, Gaber A. M.
    Alhadhrami, A.
    Alshammari, Dalal A.
    Wang, Yitong
    Algadi, Hassan
    Song, Haixiang
    ADVANCED COMPOSITES AND HYBRID MATERIALS, 2024, 7 (06)
  • [42] Pb-N Chemically Anchors CsPbBr3 on 1D Porous Tubular g-C3N4 for Enhanced Photocatalytic CO2 Reduction
    Li, Dong
    Wang, Kaixuan
    Chen, Ying
    Li, Renyi
    Tang, Jiahong
    Zhao, Yizhou
    Guo, Wei
    Chen, Qi
    Li, Yujing
    CHEMSUSCHEM, 2025, 18 (05)
  • [43] 构建三元WO3/CsPbBr3/ZIF-67异质结用于高效光催化CO2还原(英文)<iclass="icon-zqcb"></i>
    董玉杰
    江勇
    廖金凤
    陈洪燕
    匡代彬
    苏成勇
    Science China(Materials), 2022, 65 (06) : 1550 - 1559
  • [44] S-Scheme Heterojunction Efficient Extraction of Hot Carriers in CsPbBr3/Bi4O5I2 for Enhanced Photocatalytic H2 Evolution and CO2 Reduction
    Zhang, Ye
    Zhang, Mai
    Luo, Cong
    Li, Yakun
    Zhang, Xue
    Zhang, Linlin
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (24): : 11988 - 11995
  • [45] CsPbBr3钙钛矿量子点/C3N4超薄纳米片0D/2D复合材料:增强的稳定性和光催化活性(英文)
    舒孟洋
    陆嘉琳
    张志洁
    沈涛
    徐家跃
    无机材料学报, 2021, 36 (11) : 1217 - 1222
  • [46] In2O3/Bi19Br3S27 S-scheme heterojunction with enhanced photocatalytic CO2 reductionIn2O3/Bi19Br3S27S型异质结增强光催化CO2还原
    Yuqin Bian
    Houwei He
    Graham Dawson
    Jinfeng Zhang
    Kai Dai
    Science China Materials, 2024, 67 : 514 - 523
  • [47] 钼改性的钨青铜Cs0.33WO3纳米棒用于增强光催化还原空气气氛中CO2的性能(英文)
    易炼
    赵文慧
    黄艳红
    吴晓勇
    王金龙
    张高科
    Science China Materials, 2020, 63 (11) : 2206 - 2216
  • [48] Tungsten bronze Cs0.33WO3 nanorods modified by molybdenum for improved photocatalytic CO2 reduction directly from air钼改性的钨青铜Cs0.33WO3纳米棒用于增强光催化 还原空气气氛中CO2的性能
    Lian Yi
    Wenhui Zhao
    Yanhong Huang
    Xiaoyong Wu
    Jinlong Wang
    Gaoke Zhang
    Science China Materials, 2020, 63 : 2206 - 2214
  • [49] Boosted charge transfer and photocatalytic CO2 reduction over sulfur-doped C3N4 porous nanosheets with embedded SnS2-SnO2 nanojunctions硫掺杂SnS2-SnO2纳米异质结镶嵌的C3N4多孔纳米片 提高电荷转移和光催化还原CO2性能
    Xi Chen
    Yajie Chen
    Xiu Liu
    Qi Wang
    Longge Li
    Lizhi Du
    Guohui Tian
    Science China Materials, 2022, 65 : 400 - 412