PFIMD: a parallel MapReduce-based algorithm for frequent itemset mining

被引:0
|
作者
Mao Yimin
Geng Junhao
Deborah Simon Mwakapesa
Yaser Ahangari Nanehkaran
Zhang Chi
Deng Xiaoheng
Chen Zhigang
机构
[1] Jiangxi University of Science and Technology,School of Information Engineering
[2] Central South University,School of Computer Science and Engineering
来源
Multimedia Systems | 2021年 / 27卷
关键词
DiffNodeset structure; MapReduce; 2-Way comparison strategy; Load balancing strategy based on dynamic grouping; Frequent item mining;
D O I
暂无
中图分类号
学科分类号
摘要
Frequent itemset mining (FIM) is a significant data mining technique which is widely adopted in numerous applications for exploring frequent items. With the rapid growth and expansion of datasets, FIM has become an interesting topic for many researchers, which has triggered many innovations of numerous FIM algorithms in the big data environment. This study aims to design an optimization parallel frequent itemset mining algorithm based on MapReduce, named as PFIMD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{PFIMD}}$$\end{document} algorithm, to deal with the problem of time and space complexity during processing and computing item sets, as well as the failure to adequately balance the load among parallel tasks in the existing parallel FIM algorithms. First, a structure called DiffNodeset\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{DiffNodeset}}$$\end{document} is adopted for avoiding the increase of N-list\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N{-}list$$\end{document} cardinality in the MRPrePost\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{MRPrePost}}$$\end{document} algorithm effectively. Then, a 2-way comparison strategy is designed to speed up the DiffNodeset\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{DiffNodeset}}$$\end{document} generation of 2-itemsets and reduce the time complexity of the algorithm. Finally, the steps of the improved algorithm are parallelized using the cloud computing platform Hadoop and the programming model MapReduce. Moreover, to achieve a uniform grouping of each item in F-list\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F{-}list$$\end{document}, a load balancing strategy based on dynamic grouping is proposed, which solves the problem of uneven load of each node in the cluster. The experimental results show that the modified algorithm not only overcomes the shortcoming of MRPrePost\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{MRPrePost}}$$\end{document} in the big data environment, but also greatly reduces the time and space complexity. Finally, the specific applications of PFIMD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{PFIMD}}$$\end{document} algorithm in several multimedia data sets are listed to illustrate its universality.
引用
收藏
页码:709 / 722
页数:13
相关论文
共 50 条
  • [21] MapReduce-Based Frequent Pattern Mining Framework with Multiple Item Support
    Wang, Chen-Shu
    Lin, Shiang-Lin
    Chang, Jui-Yen
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS (ACIIDS 2017), PT II, 2017, 10192 : 65 - 74
  • [22] Frequent itemset mining with parallel RDBMS
    Shang, XQ
    Sattler, KU
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2005, 3518 : 539 - 544
  • [23] Asynchronous and anticipatory filter-stream based parallel algorithm for frequent itemset mining
    Veloso, A
    Meira, W
    Ferreira, R
    Neto, DG
    Parthasarathy, S
    KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2004, PROCEEDINGS, 2004, 3202 : 422 - 433
  • [24] Fast Mining Algorithm of Frequent Itemset Based on Spark
    Ding J.-M.
    Li H.-B.
    Deng B.
    Jia L.-Y.
    You J.-G.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (05): : 2446 - 2464
  • [25] The Algorithm of Mining Frequent Itemsets Based on MapReduce
    He, Bo
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON SOFT COMPUTING TECHNIQUES AND ENGINEERING APPLICATION, ICSCTEA 2013, 2014, 250 : 529 - 534
  • [26] Frequent Itemset Mining Algorithm based on Sampling Method
    Li, Haifeng
    Zhang, Ning
    Zhang, Yuejin
    PROCEEDINGS OF THE 2015 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCES AND AUTOMATION ENGINEERING, 2016, 42 : 852 - 855
  • [27] A parallel algorithm for mining constrained frequent patterns using MapReduce
    Yan, Xiaowu
    Zhang, Jifu
    Xun, Yaling
    Qin, Xiao
    SOFT COMPUTING, 2017, 21 (09) : 2237 - 2249
  • [28] Frequent Itemset Mining Algorithm Based on Linear Table
    Lu, Jun
    Xu, Wenhe
    Zhou, Kailong
    Guo, Zhicong
    JOURNAL OF DATABASE MANAGEMENT, 2023, 34 (01)
  • [29] A Parallel MapReduce Algorithm to Efficiently Support Itemset Mining on High Dimensional Data
    Apiletti, Daniele
    Baralis, Elena
    Cerquitelli, Tania
    Garza, Paolo
    Pulvirenti, Fabio
    Michiardi, Pietro
    BIG DATA RESEARCH, 2017, 10 : 53 - 69
  • [30] A Distributed Frequent Itemset Mining Algorithm Based on Spark
    Gui, Feng
    Ma, Yunlong
    Zhang, Feng
    Liu, Min
    Li, Fei
    Shen, Weiming
    Bai, Hua
    PROCEEDINGS OF THE 2015 IEEE 19TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2015, : 271 - 275