Dominant Dimension and Almost Relatively True Versions of Schur’s Theorem

被引:0
|
作者
Steffen Koenig
机构
[1] Universität zu Köln,Mathematisches Institut
来源
关键词
05E10; 16E10; 16E65; 16G10; 18E10; 18G20; 20C30; 20G05; 57M27; 81R05; Schur algebras; symmetric groups; diagram algebras; highest weight categories; dominant dimension;
D O I
暂无
中图分类号
学科分类号
摘要
Perhaps the most fundamental problems of representation theory are to classify and to describe irreducible (=simple) representations and to determine cohomology. It is crucial to develop techniques that allow to transfer information from some (known) cases to other (unknown) cases. A classical result of this kind, due to Schur, recently has been extended widely, and put into a general context. These modern ‘relative’ versions of Schur’s result will be presented. Moreover, the theoretical background behind these results, and the crucial invariant controlling the existence and strength of such equivalences, will be explained, and illustrated by an explicit example. Finally, some open problems will be stated and discussed.
引用
收藏
页码:457 / 479
页数:22
相关论文
共 50 条
  • [21] A reversal of Schur’s partition theorem
    Mircea Merca
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [22] A reversal of Schur's partition theorem
    Merca, Mircea
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (04)
  • [23] A generalization of a converse to Schur's theorem
    Sury, B.
    ARCHIV DER MATHEMATIK, 2010, 95 (04) : 317 - 318
  • [24] Schur's Theorem on the Stability of Networks
    Schwarzweller, Christoph
    Rowinska-Schwarzweller, Agnieszka
    FORMALIZED MATHEMATICS, 2006, 14 (04): : 135 - 142
  • [25] A generalization of a converse to Schur’s theorem
    B. Sury
    Archiv der Mathematik, 2010, 95 : 317 - 318
  • [26] A simple proof for Schur's theorem
    Kortram, RA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (11) : 3211 - 3212
  • [27] A SCHUR-TYPE THEOREM FOR CR-INTEGRABLE ALMOST KENMOTSU MANIFOLDS
    Wang, Yaning
    Liu, Ximin
    MATHEMATICA SLOVACA, 2016, 66 (05) : 1217 - 1226
  • [28] Approximate versions of Melamed's theorem
    Barbour, AD
    Brown, TC
    JOURNAL OF APPLIED PROBABILITY, 1996, 33 (02) : 472 - 489
  • [29] Regressive versions of Hindman’s theorem
    Lorenzo Carlucci
    Leonardo Mainardi
    Archive for Mathematical Logic, 2024, 63 : 447 - 472
  • [30] Quantified versions of Ingham's theorem
    Chill, Ralph
    Seifert, David
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2016, 48 : 519 - 532