On the lower bounds for real double Hurwitz numbers

被引:0
|
作者
Yanqiao Ding
机构
[1] Zhengzhou University,School of Mathematics and Statistics
来源
关键词
Real enumerative geometry; Real Hurwitz numbers; Tropical Hurwitz numbers; Asymptotic growth; Primary 14N10; 14T90; Secondary 14P99;
D O I
暂无
中图分类号
学科分类号
摘要
As the real counterpart of double Hurwitz number, the real double Hurwitz number depends on the distribution of real branch points. We consider the problem of asymptotic growth of real and complex double Hurwitz numbers. We provide a lower bound for real double Hurwitz numbers based on the tropical computation of real double Hurwitz numbers. By using this lower bound and J. Rau’s result ( Math Ann 375: 895-915, 2019), we prove the logarithmic equivalence of real and complex Hurwitz numbers.
引用
收藏
页码:525 / 546
页数:21
相关论文
共 50 条
  • [21] Towards the topological recursion for double Hurwitz numbers
    Do, Norman
    Karev, Maksim
    TOPOLOGICAL RECURSION AND ITS INFLUENCE IN ANALYSIS, GEOMETRY, AND TOPOLOGY, 2018, 100 : 151 - 178
  • [22] On framed simple purely real Hurwitz numbers
    Kazarian, M. E.
    Lando, S. K.
    Natanzon, S. M.
    IZVESTIYA MATHEMATICS, 2021, 85 (04) : 681 - 704
  • [23] DOUBLE HURWITZ NUMBERS VIA THE INFINITE WEDGE
    Johnson, Paul
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (09) : 6415 - 6440
  • [24] Generalized string equations for double Hurwitz numbers
    Takasaki, Kanehisa
    JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (05) : 1135 - 1156
  • [25] LOWER BOUNDS FOR BETTI NUMBERS
    AVRAMOV, LL
    BUCHWEITZ, RO
    COMPOSITIO MATHEMATICA, 1993, 86 (02) : 147 - 158
  • [26] LOWER BOUNDS OF THE RAMSEY NUMBERS
    阚家海
    Chinese Science Bulletin, 1991, (07) : 612 - 613
  • [27] LOWER BOUNDS FOR RAMSEY NUMBERS
    ROBILLARD, P
    CANADIAN MATHEMATICAL BULLETIN, 1970, 13 (02): : 227 - +
  • [28] LOWER BOUNDS OF THE RAMSEY NUMBERS
    KAN, JH
    CHINESE SCIENCE BULLETIN, 1991, 36 (07): : 612 - 613
  • [29] LOWER BOUNDS OF RAMSEY NUMBERS
    阚家海
    Systems Science and Mathematical Sciences, 1990, (02) : 97 - 101
  • [30] Double Hurwitz Numbers and Multisingularity Loci in Genus 0
    Kazarian, Maxim
    Lando, Sergey
    Zvonkine, Dimitri
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (12) : 9529 - 9570