Isomorphism Classes of Genus-2 Hyperelliptic Curves Over Finite Fields

被引:0
|
作者
L. Hernández Encinas
Alfred J. Menezes
J. Muñoz Masqué
机构
[1] Instituto de Física Aplicada,
[2] CSIC,undefined
[3] C/ Serrano 144,undefined
[4] 28006 Madrid,undefined
[5] Spain (e-mail: {luis,undefined
[6] jaime}@iec.csic.es),undefined
[7] Department of C&O,undefined
[8] University of Waterloo,undefined
[9] Waterloo,undefined
[10] Ontario,undefined
[11] Canada N2L 3G1 (e-mail: ajmeneze@uwaterloo.ca),undefined
关键词
Keywords: Discriminant, Hyperelliptic curves over finite fields, Public-key cryptography.;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a reduced equation for hyperelliptic curves of genus 2 over finite fields ?q of q elements with characteristic different from 2 and 5. We determine the number of isomorphism classes of genus-2 hyperelliptic curves having an ?q-rational Weierstrass point. These results have applications to hyperelliptic curve cryptography.
引用
收藏
页码:57 / 65
页数:8
相关论文
共 50 条
  • [31] Optimal Eta Pairing on Supersingular Genus-2 Binary Hyperelliptic Curves
    Aranha, Diego F.
    Beuchat, Jean-Luc
    Detrey, Jeremie
    Estibals, Nicolas
    TOPICS IN CRYPTOLOGY - CT-RSA 2012, 2012, 7178 : 98 - +
  • [32] Non-hyperelliptic curves of genus three over finite fields of characteristic two
    Nart, E
    Ritzenthaler, C
    JOURNAL OF NUMBER THEORY, 2006, 116 (02) : 443 - 473
  • [33] ISOMORPHISM-CLASSES OF ELLIPTIC-CURVES OVER FINITE-FIELDS OF CHARACTERISTIC-2
    MENEZES, A
    VANSTONE, S
    UTILITAS MATHEMATICA, 1990, 38 : 135 - 153
  • [34] EFFICIENT ENCODINGS TO HYPERELLIPTIC CURVES OVER FINITE FIELDS
    Kashani, Amirmehdi Yazdani
    Daghigh, Hassan
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2018, 33 (05): : 673 - 681
  • [35] Differential operators and hyperelliptic curves over finite fields
    Blanco-Chacon, Ivan
    Boix, Alberto F.
    Fordham, Stiofain
    Yilmaz, Emrah Sercan
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 51 : 351 - 370
  • [36] STATISTICS OF THE JACOBIANS OF HYPERELLIPTIC CURVES OVER FINITE FIELDS
    Xiong, Maosheng
    Zaharescu, Alexandru
    MATHEMATICAL RESEARCH LETTERS, 2012, 19 (02) : 255 - 272
  • [37] Counting points on hyperelliptic curves over finite fields
    Gaudry, P
    Harley, R
    ALGORITHMIC NUMBER THEORY, 2000, 1838 : 313 - 332
  • [38] THE GEOMETRY OF THE HYPERELLIPTIC INVOLUTION IN GENUS-2
    HAAS, A
    SUSSKIND, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 105 (01) : 159 - 165
  • [39] Isomorphism classes of Drinfeld modules over finite fields
    Karemaker, Valentijn
    Katen, Jeffrey
    Papikian, Mihran
    JOURNAL OF ALGEBRA, 2024, 644 : 381 - 410
  • [40] Enumerating hyperelliptic curves over finite fields in quasilinear time
    Howe, Everett W.
    RESEARCH IN NUMBER THEORY, 2025, 11 (01)