A natural nonconforming FEM for the Bingham flow problem is quasi-optimal

被引:0
|
作者
C. Carstensen
B. D. Reddy
M. Schedensack
机构
[1] Humboldt-Universität zu Berlin,Institut für Mathematik
[2] Yonsei University,Department of Computational Science and Engineering
[3] University of Cape Town,Department of Mathematics and Applied Mathematics
[4] Universität Bonn,Institut für Numerische Simulation
来源
Numerische Mathematik | 2016年 / 133卷
关键词
65N30; 76M10;
D O I
暂无
中图分类号
学科分类号
摘要
This paper introduces a novel three-field formulation for the Bingham flow problem and its two-dimensional version named after Mosolov together with low-order discretizations: a nonconforming for the classical formulation and a mixed finite element method for the three-field model. The two discretizations are equivalent and quasi-optimal in the sense that the H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} error of the primal variable is bounded by the error of the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} best-approximation of the stress variable. This improves the predicted convergence rate by a log factor of the maximal mesh-size in comparison to the first-order conforming finite element method in a model scenario. Despite that numerical experiments lead to comparable results, the nonconforming scheme is proven to be quasi-optimal while this is not guaranteed for the conforming one.
引用
收藏
页码:37 / 66
页数:29
相关论文
共 50 条
  • [41] The MusIC method: a fast and quasi-optimal solution to the muscle forces estimation problem
    Muller, A.
    Pontonnier, C.
    Dumont, G.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2018, 21 (02) : 149 - 160
  • [42] Quasi-optimal synthesis of an adaptive filter in the problem of estimating the state of dynamic systems
    Kostoglotov, Andrey
    Penkov, Anton
    Lazarenko, Sergey
    INNOVATIVE TECHNOLOGIES IN SCIENCE AND EDUCATION (ITSE-2020), 2020, 210
  • [43] Quasi-optimal control of dynamic systems
    Aleksandrov, V. M.
    AUTOMATION AND REMOTE CONTROL, 2016, 77 (07) : 1163 - 1179
  • [44] COMPUTING A SPLINE WITH QUASI-OPTIMAL NODES
    DELAYE, A
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1989, 30 (3-4) : 249 - 255
  • [45] Adaptive Security with Quasi-Optimal Rate
    Hemenway, Brett
    Ostrovsky, Rafail
    Richelson, Silas
    Rosen, Alon
    THEORY OF CRYPTOGRAPHY, TCC 2016-A, PT I, 2016, 9562 : 525 - 541
  • [46] Quasi-optimal model of the acoustic source
    Branski, A
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2000, 24 (09) : 685 - 693
  • [47] QUASI-OPTIMAL CHOICE OF REGULARIZED APPROXIMATION
    TIKHONOV, AN
    GLASKO, VB
    KRIKSIN, IA
    DOKLADY AKADEMII NAUK SSSR, 1979, 248 (03): : 531 - 535
  • [48] On constructing quasi-optimal robust systems
    Zotov, M. G.
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2013, 52 (05) : 677 - 685
  • [49] Influence of impulsive noise in quasi-optimal and optimal receivers
    Sánchez, M
    Domínguez, A
    6TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL III, PROCEEDINGS: IMAGE, ACOUSTIC, SPEECH AND SIGNAL PROCESSING I, 2002, : 321 - 324
  • [50] Statistical Synthesis of Optimal and Quasi-optimal Chopper Radiometers
    Kravchenko, Victor F.
    Volosyuk, Valery K.
    Pavlikov, Vladimir V.
    PIERS 2012 MOSCOW: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, 2012, : 51 - 55