Heterostructured NiS2@SnS2 hollow spheres as superior high-rate and durable anodes for sodium-ion batteries

被引:0
|
作者
Chongwei Li
Jinchuan Hou
Jingyi Zhang
Xiaoyue Li
Shiqi Jiang
Guoqing Zhang
Zhujun Yao
Tiancun Liu
Shenghui Shen
Zhiqi Liu
Xinhui Xia
Jie Xiong
Yefeng Yang
机构
[1] Zhejiang Sci-Tech University,School of Materials Science and Engineering
[2] Zhejiang University,State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering
[3] Zhejiang Sci-Tech University,MOE Key Laboratory of Advanced Textile Materials and Manufacturing Technology
[4] Hangzhou Yanqu Information Technology Co.,undefined
[5] Ltd.,undefined
来源
Science China Chemistry | 2022年 / 65卷
关键词
anode; metal-organic frameworks; heterostructure; bimetallic sulfide; sodium ion battery;
D O I
暂无
中图分类号
学科分类号
摘要
Tin-based sulfides have attracted increasing attention as anodes for sodium-ion batteries (SIBs) owing to their high theoretical capacity; however, the poor rate capability and inferior cycling stability caused by the low electrical conductivity, sluggish kinetics and drastic volume variations during cycling have greatly hampered their practical applications. Herein, heterostructured NiS2@SnS2 hybrid spheres were delicately designed and constructed by anchoring interconnected SnS2 nanosheets on metal-organic frameworks (MOFs)-derived NiS2 hollow spheres coupled with N-doped carbon skeleton through facile solvothermal and sulfurization/carbonization processes. The unique hollow heterostructure with highly conductive carbon matrix can effectively facilitate the charge transfer kinetics and ensure the desired buffer space while endowing more active sites and enhanced structural integrity, as demonstrated by the experimental and density functional theory (DFT) results. Benefitting from these merits, the NiS2@SnS2 hybrid composite displays a high reversible capacity of 820 mAh g−1 after 250 cycles at 1 A g−1, and retains a value of 673 mAh g−1 after 1,300 cycles at 5 A g−1, manifesting the excellent high-rate and durable sodium storage behaviors when applied in SIBs. This study shall shed more light on the fabricating and interface engineering of other transition metal based composite anodes for high performance SIBs. [graphic not available: see fulltext]
引用
收藏
页码:1420 / 1432
页数:12
相关论文
共 50 条
  • [41] Porous NiS2 nanosheets anchored on reduced graphene oxide as high-rate and long-life anode materials for sodium-ion batteries
    Cai, Jianzhong
    Chen, Xunjie
    Duan, Xuezhi
    Yang, Guangxing
    Zhang, Qiao
    Fan, Haosen
    Liu, Zhiting
    Peng, Feng
    ELECTROCHIMICA ACTA, 2023, 462
  • [42] A multiphase sodium vanadium phosphate cathode material for high-rate sodium-ion batteries
    Chuan Wang
    Hai Long
    Lijiao Zhou
    Chao Shen
    Wei Tang
    Xiaodong Wang
    Bingbing Tian
    Le Shao
    Zhanyuan Tian
    Haijun Su
    Keyu Xie
    JournalofMaterialsScience&Technology, 2021, 66 (07) : 121 - 127
  • [43] A multiphase sodium vanadium phosphate cathode material for high-rate sodium-ion batteries
    Wang, Chuan
    Long, Hai
    Zhou, Lijiao
    Shen, Chao
    Tang, Wei
    Wang, Xiaodong
    Tian, Bingbing
    Shao, Le
    Tian, Zhanyuan
    Su, Haijun
    Xie, Keyu
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 66 : 121 - 127
  • [44] Size-tunable SnS2 nanoparticles assembled on graphene as anodes for high performance lithium/sodium-ion batteries
    Zhao, Bing
    Song, Daiyun
    Ding, Yanwei
    Li, Wenrong
    Wang, Zhixuan
    Jiang, Yong
    Zhang, Jiujun
    ELECTROCHIMICA ACTA, 2020, 354
  • [45] SnS2@C Hollow Nanospheres with Robust Structural Stability as High-Performance Anodes for Sodium Ion Batteries
    Li, Shuaihui
    Zhao, Zhipeng
    Li, Chuanqi
    Liu, Zhongyi
    Li, Dan
    NANO-MICRO LETTERS, 2019, 11 (01)
  • [46] SnS2@C Hollow Nanospheres with Robust Structural Stability as High-Performance Anodes for Sodium Ion Batteries
    Shuaihui Li
    Zhipeng Zhao
    Chuanqi Li
    Zhongyi Liu
    Dan Li
    Nano-Micro Letters, 2019, 11
  • [47] Hierarchical hollow-structured anode for high-rate sodium-ion battery
    Wu, Chuanqiang
    Zhou, Yu
    Wang, Changda
    Zhu, Wen
    Ding, Shiqing
    Chen, Shuangming
    Song, Li
    JOURNAL OF SOLID STATE CHEMISTRY, 2020, 283
  • [48] V3S4/PPy nanocomposites with superior high-rate capability as sodium-ion battery anodes
    Zhang, Yajuan
    Li, Yue
    Zhao, Guangzhen
    Han, Lu
    Lu, Ting
    Li, Jinliang
    Zhu, Guang
    Pan, Likun
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (34) : 18089 - 18096
  • [49] SnS2-CoS2@C nanocubes as high initial coulombic efficiency and long-life anodes for sodium-ion batteries
    Liu, Xiaoqin
    Xiang, Yu
    Li, Qingping
    Zheng, Qiaoji
    Jiang, Na
    Huo, Yu
    Lin, Dunmin
    Electrochimica Acta, 2021, 387
  • [50] SnS2-CoS2 @C nanocubes as high initial coulombic efficiency and long-life anodes for sodium-ion batteries
    Liu, Xiaoqin
    Xiang, Yu
    Li, Qingping
    Zheng, Qiaoji
    Jiang, Na
    Huo, Yu
    Lin, Dunmin
    ELECTROCHIMICA ACTA, 2021, 387