Explainable Methods for Image-Based Deep Learning: A Review

被引:0
|
作者
Lav Kumar Gupta
Deepika Koundal
Shweta Mongia
机构
[1] University of Petroleum and Energy Studies,School of Computer Science
[2] Manav Rachna International Institute of Research and Studies,Department of Computer Science and Engineering, Faculty of Engineering and Technology
关键词
D O I
暂无
中图分类号
学科分类号
摘要
With Artificial Intelligence advancement, Deep neural networks (DNN) are extensively used for decision-making in intelligent systems. However, improved performance and accuracy have been achieved through the increasing use of complex models, which makes it challenging for users to understand and trust. This ambiguous nature of these Deep machine learning models of high accuracy and low interpretability is problematic for their adoption in critical domains where it is vital to be able to explain the decisions made by the system. Explainable Artificial Intelligence has become an exciting field for explaining and interpreting machine learning models. Among the different data types used in machine learning, image data is considered hard to train because of the factors such as class, scale, viewpoint, and background variations. This paper aims to provide a rounded view of emerging methods to explain DNN models as a way to boost transparency in image-based deep learning with the analysis of the current and upcoming trends.
引用
收藏
页码:2651 / 2666
页数:15
相关论文
共 50 条
  • [41] Image-Based Cardiac Diagnosis With Machine Learning: A Review
    Martin-Isla, Carlos
    Campello, Victor M.
    Izquierdo, Cristian
    Raisi-Estabragh, Zahra
    Baessler, Bettina
    Petersen, Steffen E.
    Lekadir, Karim
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2020, 7
  • [42] Deep Learning for an Automated Image-Based Stem Cell Classification
    Zamani, Nurul Syahira Mohamad
    Hoe, Ernest Yoon Choong
    Huddin, Aqilah Baseri
    Zaki, Wan Mimi Diyana Wan
    Abd Hamid, Zariyantey
    JURNAL KEJURUTERAAN, 2023, 35 (05): : 1181 - 1189
  • [43] Image-based deep learning automated sorting of date fruit
    Nasiri, Amin
    Taheri-Garavand, Amin
    Zhang, Yu-Dong
    POSTHARVEST BIOLOGY AND TECHNOLOGY, 2019, 153 : 133 - 141
  • [44] Using Deep Learning for Image-Based Plant Disease Detection
    Mohanty, Sharada P.
    Hughes, David P.
    Salathe, Marcel
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [45] Note: Image-based Prediction of House Attributes with Deep Learning
    Huang, Weimin
    Olson, Alexander W.
    Saxe, Shoshanna
    Khalil, Elias B.
    PROCEEDINGS OF THE 4TH ACM SIGCAS/SIGCHI CONFERENCE ON COMPUTING AND SUSTAINABLE SOCIETIES, COMPASS'22, 2022, : 693 - 695
  • [46] Image-based prediction of residential building attributes with deep learning
    Huang, Weimin
    Olson, Alexander W.
    Khalil, Elias B.
    Saxe, Shoshanna
    JOURNAL OF INDUSTRIAL ECOLOGY, 2025, 29 (01) : 81 - 95
  • [47] Deep learning for image-based cancer detection and diagnosis - A survey
    Hu, Zilong
    Tang, Jinshan
    Wang, Ziming
    Zhang, Kai
    Zhang, Ling
    Sun, Qingling
    PATTERN RECOGNITION, 2018, 83 : 134 - 149
  • [48] A Deep Learning Framework for Image-Based Screening of Kawasaki Disease
    Lam, Jonathan Y.
    Kanegaye, John T.
    Xu, Ellen
    Gardiner, Michael A.
    Burns, Jane C.
    Nemati, Shamim
    Tremoulet, Adriana H.
    2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,
  • [49] Prediction of sloshing pressure using image-based deep learning
    Kim, Ki Jong
    Kim, Daegyoum
    OCEAN ENGINEERING, 2024, 303
  • [50] Image-based phenotyping of disaggregated cells using deep learning
    Samuel Berryman
    Kerryn Matthews
    Jeong Hyun Lee
    Simon P. Duffy
    Hongshen Ma
    Communications Biology, 3