A trust region algorithm with adaptive cubic regularization methods for nonsmooth convex minimization

被引:0
|
作者
Sha Lu
Zengxin Wei
Lue Li
机构
[1] Guangxi University,School of Mathematics and Information Science
[2] Guangxi Teachers Education University,School of Mathematical Science
[3] Guangxi Normal University,School of Mathematical Sciences
关键词
Trust region method; Nonsmooth convex minimization; Moreau-Yosida regularization; Proximal method; Cubic overestimation model;
D O I
暂无
中图分类号
学科分类号
摘要
By using the Moreau-Yosida regularization and proximal method, a new trust region algorithm is proposed for nonsmooth convex minimization. A cubic subproblem with adaptive parameter is solved at each iteration. The global convergence and Q-superlinear convergence are established under some suitable conditions. The overall iteration bound of the proposed algorithm is discussed. Preliminary numerical experience is reported.
引用
收藏
页码:551 / 573
页数:22
相关论文
共 50 条
  • [21] An adaptive primal-dual framework for nonsmooth convex minimization
    Quoc Tran-Dinh
    Ahmet Alacaoglu
    Olivier Fercoq
    Volkan Cevher
    Mathematical Programming Computation, 2020, 12 : 451 - 491
  • [22] An adaptive primal-dual framework for nonsmooth convex minimization
    Quoc Tran-Dinh
    Alacaoglu, Ahmet
    Fercoq, Olivier
    Cevher, Volkan
    MATHEMATICAL PROGRAMMING COMPUTATION, 2020, 12 (03) : 451 - 491
  • [23] Updating the regularization parameter in the adaptive cubic regularization algorithm
    N. I. M. Gould
    M. Porcelli
    P. L. Toint
    Computational Optimization and Applications, 2012, 53 : 1 - 22
  • [24] Updating the regularization parameter in the adaptive cubic regularization algorithm
    Gould, N. I. M.
    Porcelli, M.
    Toint, P. L.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 53 (01) : 1 - 22
  • [25] Scalable adaptive cubic regularization methods
    Dussault, Jean-Pierre
    Migot, Tangi
    Orban, Dominique
    MATHEMATICAL PROGRAMMING, 2024, 207 (1-2) : 191 - 225
  • [26] A trust region method for minimization of nonsmooth functions with linear constraints
    José Mario Martínez
    Antonio Carlos Moretti
    Mathematical Programming, 1997, 76 : 431 - 449
  • [27] A trust region method for minimization of nonsmooth functions with linear constraints
    Martinez, JM
    Moretti, AC
    MATHEMATICAL PROGRAMMING, 1997, 76 (03) : 431 - 449
  • [28] Cubic-regularization counterpart of a variable-norm trust-region method for unconstrained minimization
    J. M. Martínez
    M. Raydan
    Journal of Global Optimization, 2017, 68 : 367 - 385
  • [29] Cubic-regularization counterpart of a variable-norm trust-region method for unconstrained minimization
    Martinez, J. M.
    Raydan, M.
    JOURNAL OF GLOBAL OPTIMIZATION, 2017, 68 (02) : 367 - 385
  • [30] Fixed and virtual stability center methods for convex nonsmooth minimization
    Fuduli, A
    NONLINEAR OPTIMIZATION AND RELATED TOPICS, 2000, 36 : 105 - 122